

Joint Industry Programme on Sound and Marine Life Review of Existing Data on Underwater Sounds Produced by the Oil and Gas Industry Issue 1

Roy Wyatt Seiche Measurements Limited August 2008 Submitted to: Joint Industry Programme on Sound and Marine Life Submitted by: Roy Wyatt Seiche Measurements Ltd Thatton Farm Petersmarland Great Torrington EX38 8QG

Tel: 01805 601358 Fax: 01805 601139 Email: info@sml.eu.com

Joint Industry Programme on Sound and Marine Life

Review of Existing Data on Underwater Sounds Produced by the Oil and Gas Industry

Issue 1

Seiche Measurements Limited Ref – S186

August 2008

Executive Summary

During the exploration, development, production and decommissioning phases of offshore oil and gas reserves these activities contribute to the noise levels in the oceans, estuaries and rivers of the world. The purpose of this report is to catalogue and assess the available data that characterise the underwater sounds made by the oil and gas industries in all phases of their activities.

Measurements of underwater sounds are scarce. Given the volume of traffic and industrial activity in, on or by the shores of the oceans it is surprising that so little is known of the likely impact man made noise may have within the oceans.

Measurements made over the last 40 years at a site off the southern Californian coast show a general increase in low frequency noise in the ocean with time. The increase in this noise level has been widely attributed to increases in shipping and other anthropogenous (human made) noise (this is often termed anthropogenic noise). The significant amount of shipping and other activities attributable to oil and gas industries contributes to this rise in the total background noise in the ocean. In some areas, ocean noise background levels have doubled every decade for the last six decades mainly due to the increase in shipping. (McDonald, Hilderbrand et al. 2006)

Few measurements have been made on underwater noise sources, and those that have been made are often limited in their scope due to vessel time, operational and weather constraints. Comparison between measurements by different observers can be difficult due to the vast range of ever changing conditions encountered in the ocean seabed, and sea-surface. Many metrics can be used to describe the acoustic properties of a sound source with little standardization between experiments.

Local conditions (geographic, geological, oceanographic and meteorological) all have a very substantial impact on the way in which sound propagates from a source through the water to a measurement receiver. As the receiver is often a considerable distance from the source it is usually necessary to measure many other parameters in order to attempt to determine the true nature of the source itself.

This report reviews the available data on noise in the oceans produced by the oil and gas industries however; due to the scarcity of data in some areas other noise sources are included in some sections for comparative purposes.

The noise levels are presented as the measured values by the researcher and then in an extrapolated form in a consistent set of units. To do this extrapolation a number of assumptions have been made particularly relating to the local conditions under which the measurements were determined and the nature of the source signal.

The extrapolated values should be used as guidelines only as the variability of the transmission of sound and the nature of the sound source itself cannot enable an accurate translation between the remotely measured values and the extrapolated (back projected) values.

Contents

1. Introduction

- 1.1 Background
- 1.2 Outline of review
- 1.3 General notes on underwater acoustics
- 1.4 Report structure

2. Notes on Tables

- 2.1 Units
- 2.2 Measured values
- 2.3 Extrapolated source values
- 2.4 Source values at 1m
- 2.5 Water depth
- 2.6 Classification of noise sources

3. Oil Industry Noise Sources and Tables of Measurements

- 3.1 Aircraft
- 3.2 Construction
- 3.3 Dredging
- 3.4 Drilling
- 3.5 Explosives
- 3.6 Seismic exploration sound sources
- 3.7 Shipping and small vessel noise
- 3.8 Sites
- 3.9 Sonar and general acoustic devices
- 3.10 Tools
- 4. Other Sounds in the Oceans
 - 4.1 Man made noise
 - 4.2 Natural noise sources
 - 4.3 Biological noise sources
- 5. Other Useful Literature
 - 5.1 Technical information and specifications
 - 5.2 Reports relating to underwater noise and the oil industry
 - 5.3 Other relevant literature on underwater sound

Appendix A

Definition of Metrics

- A.1 Signal definitions
- A.2 Extrapolation of data points
- A.3 Measurement interpretation

Appendix B

Conversion tables and general information

- B.1 Cubic inches to litres
- B.2 Pounds per square inch to Mpa
- B.3 Sound pressure level conversion
- B.4 Knots to m/sec
- B.5 Sound attenuation properties of seawater
- B.6 Ambient noise levels in the ocean
- B.7 Sound transmission through air
- 6. References and citations

1. Introduction

"Human activities are increasing the level of sound in the oceans, causing widespread concern about the effect on marine mammals and marine ecosystems".

A report to congress from the Marine Mammal Commission, March 2007 (MMC 2007)

1.1 Background

Identifying the characteristics of anthropogenic noise sources was identified as a priority in the report of the International Workshop: Policy on Sound and Marine Mammals (Vos and Reeves 2005) and has been identified by the Oil and Gas Producers association (OGP) as an area of concern.

During exploration, development, production and the decommissioning phases of offshore oil and gas reserves the oil and gas industries contribute to the noise levels in the oceans, estuaries and rivers of the world. This noise contributes to the background noise of the oceans as well as causing local disturbance.

In general, sounds in the oceans originate from natural causes such as earthquakes, rainfall, and animal noises and anthropogenic activities such as shipping, seismic surveys, research activities and sonars.

The ambient noise in the ocean over the frequency band 20Hz to 300Hz is generally dominated by distant shipping noise (Urick 1967) (graph section 7.6). There is evidence to show that low frequency noise has increased at a rate of approximately 3dB per decade in the period from 1950 to 1998 (McDonald, Hilderbrand et al. 2006). This noise is thought to be primarily due to the increase in propeller driven vessels caused by the growing world economy. A simple relationship can be shown between the increase in gross domestic product and the increase in low frequency ocean noise (Frisk).

It has been suggested that a significant proportion of this noise is due to the activities of the oil and gas industries, which account for nearly 50% of the gross tonnage although being only 19% of the total number of vessels in the world's commercial fleet. (McDonald, Hilderbrand et al. 2006).

Whilst the evidence is that large vessels contribute to total ocean noise, small vessels and other sound sources, although not contributing to the global ocean acoustic environment, may be important localised sound sources.

1.2 Outline of review

This review assesses and tabulates the available information on underwater noise generated by the oil and gas industry. The review also includes sources of technical information and environmental review documents of relevance to the underwater sound produced by the oil and gas industries. It is assumed that the reader has a general knowledge of oil industry activities however a useful review of the oil and gas industry and processes is given in the DTI document "An Overview of Offshore Oil and Gas Exploration and Production Activities" (DTI 2006).

The complex nature of underwater measurements makes the interpretation of published results complex. In this review only papers describing full details of measurements are considered. Secondary sources and grey literature have not been included except where scarcity of information or other details of the measurements are of importance. This has been the case in considering aircraft and helicopter noise where little published information on the underwater noise characteristics of current aircraft in use is available.

All the documents are indexed separately in a database format. For copyright reasons not all of these papers are available electronically.

The report is designed to be easily understood, and the tables are structured in groups of common activities. To facilitate the use of different measurement systems (FPS, SI, cgs, etc) conversion tables for the most common units are given in Appendix B. The units used in the report are those the most commonly used within the oil industry.

Some vessel names have been omitted from the report due to the commercial sensitivity of measurements and possible changes in the vessels performance.

1.3 General notes on underwater acoustics

Sound waves spread, dissipate and reflect from the sea surface and sea bed as they travel through the ocean away from their source. The characteristics of the received sounds depend not only on the characteristics of the source but also on the distance between source and receiver and the nature of the environment between them. Thus the received level of the source at a point in the water column is dependent on a large number of variables, such as water depth, source and receiver depths, temperature gradients, sea bed and sea surface properties, salinity and many others.

Not all sounds move through the ocean in the same way, high frequency sounds generally attenuate more quickly than low frequency sounds: a 100 Hz sound may be detectable after travelling hundreds or even thousands of kilometres, whereas a 100 kHz sound may travel for only a few kilometres, (MMC 2007). Typical attenuation characteristics of seawater are given in Appendix B figure 5. The oceans can form wave guides carrying sounds large distances and also form filters removing frequency components from the source signal. The detailed knowledge of the local conditions under which the measurements have been made is therefore very important for understanding the nature of the source.

In order to standardise underwater source measurements, source levels are normally quoted as if measured at 1 metre from the source. In most cases this is a theoretical point and in practice rarely can a measurement at 1m from the source be made (for example a super tanker propulsion system and hull may be hundreds of metres in length and therefore forms a very large distributed source). In order to determine the nature of the source as if measured at 1m then the receiver often needs to be a significant distance from the source and hence the nature of the changes made to the sound in its transit from source to receiver need to be understood. The number and type of variables in the ocean means that received sound levels will vary from the same source in different areas of water and hence a detailed survey of an area is required before any detailed and accurate modelling of the propagation and a detailed description of the acoustic properties of the source can be achieved (Hazelwood 2005). Generally detailed measurements of the ocean parameters cannot be made and hence simplified laws of sound spreading are applied to derive an approximation of the source nature and level. In a few cases detailed modelled results are available and these are quoted in the text.

1.4 Report structure

The report is aimed at giving a quick reference guide to sources of underwater sounds made by the oil and gas industry and the references to their detailed measurements. The report also includes tables of references related to underwater noise in general. Where available, third octave spectrum levels have been given in addition to the tabulated source level information. In some cases where detailed measurements and modelling of the environment have been made details on individual vessels have been given (courtesy of JASCO).

Section 2. The interpretation of reported measurements is complex and a number of assumptions need to be made when extrapolating the data into common units. This section outlines the methodology used in the constructing the tables.

It should be noted that there are many variables associated with the characteristics of underwater sound and there is much debate over which units and characteristics should be used to define an underwater sound. Where available a number of metrics have been quoted for the same noise source.

Section 3. Information is given on the nature of oil and gas industry underwater sounds and a review of the information available. In some cases the structure of the noise source is considered and methods for practical approximation of noise levels are given. The section gives a review of oil industry noise in a tabulated form for each group of noise types from published sources and gives some additional data from the grey literature where published information is lacking.

Section 4. Considers other sounds in the oceans and tabulates both man made noise and natural noise sources.

Section 5. The bio-acoustic impact of underwater sound has been the subject of many reports, papers and books notably Marine Mammals and Noise (Richardson, Greene et al. 1995) which gives considerable information on noise sources and their potential impact on marine mammals. Many reports consider the detail of particular industrial effects and a number of reports outline concerns regarding the overall impact of sound on the underwater

environment typically (IFAW 2004). A summary of these reports and reference works is given in this section 5.

Appendix A. This gives definitions of the metrics used within the report and other common terms used in descriptions of underwater acoustics

Appendix B. Provides conversion tables to assist in interpretation of the tabulated data and information on sea water characteristics and noise levels

Section 6. Is the reference list of cited papers used in the report which is also available as a searchable database.

2. Notes on the use of the tables

2.1 Units.

The units used in the tables are those in common usage by the oil industry, these being typically a mixture of FPS and SI system, most publications report air gun capacities in cubic inches speed of vessels in knots and water depth in metres. Conversion tables to standard SI units are given in Appendix A.

Where reported, Sound Pressure Level (S.P.L.) is taken to mean the rms value of a continuous sound, quoted in dB re 1μ Pa. Where this is quoted for a pulse, the duration of the averaging of the pulse is stated when known.

There are many variables that can be used to define an underwater sound however most papers report basic parameters only. There is much debate over which units and characteristics should be used to define an underwater sound. This report, by necessity, takes a simplistic view as insufficient information is available to present consistent detailed information.

2.2 Measured Values

These values are the actual measurement values made in the field or extrapolated back to a 1m reference by the experimenters using measured values of sound spreading and absorption for the area in which the experiment was performed. Where multiple measurements have been made, the measurement generally the closest to the source has been quoted as this is likely to have the least errors associated with sound propagation. Where multiple hydrophones at different depths have been used either all data is presented or the higher value has been stated.

Where available the source levels for manufactured items or modelled values are given in the foot notes. There is often a considerable difference between the modelled values or the manufactures quoted value and the measured values. The reasons for this may be many including:

Directionality of source in the vertical and horizontal planes (in particular air gun arrays) Sea-bed and sea-surface interactions at measurement position Absorption characteristics of seawater The depth of the receiver (McCauley, Fewtrell et al. 2000) Errors associated with the calculation of the transmission characteristics of the water between source and receiver

2.3 Extrapolated source values.

Authors of papers use many different metrics to describe the sound source level received at their measurement positions. These measurements are often described such that comparisons

between different measurements cannot be readily made. The extrapolated values in the tables in section 3 are based on a back projection to the source using transmission coefficients either stated within the reviewed paper or typical of the water depths and conditions. This back projection inevitably has an associated error due to the local water transmission properties. These errors may be significant.

The details of the extrapolation methods used are given in Appendix A. In some cases where the nature of the source or the locality would lead to considerable uncertainty in the back projection calculation, the calculation has been omitted and only the measured results presented.

The broad band peak to peak level in MPa at 1m has been chosen as the standard reference as the majority of available information can be reasonably interpreted into these units. Where other information on the sound is available these are included in the tables as footnotes or included as separate charts.

2.4 Source values at one metre

It is common practice to quote source levels at one metre. Many of the sources described are large distributed sources but are described as though the sound source was located at one point, this gives a source value which may be considerably higher than any individual point measured in the near field but represents the addition of the distributed sources of sound when measured in the far field. In the case of a seismic sound source, an air gun array, the source level at 1m may be quoted as 250dB peak to peak re 1 μ Pa at 1m as a theoretical value however as the sound source is spread over a large area at no point will the pressure exceed 235dB peak to peak, (Gausland 2000).

2.5 Water depth

Water depth plays a critical role in the transmission of sound, allowing in deep water, the formation of a sound duct carrying low frequency signals long distances and in shallow water forming a low frequency cut off filter. The depth of water can thus significantly modify the received source signal and is an important factor in the analysis of measurements.

Where water depth has been quoted it is the mean water depth of high and low tide or the depth stated by the paper author which is assumed to be the average water depth for the measurement area. Comments are made for any particular geographic circumstance.

2.6 Classification

Some non oil industry sounds have been included for comparison purposes or where the scarcity of information requires some further detail to typify the noise source The noise sources have been classified as follows;

Aircraft	Table	Page
Fixed wing	Table 3.1.1	12
Rotary Wing	Table 3.1.2	13
Construction		
Pile driving		
General	Table 3.2.1	19
Impact	Table 3.2.2	20, 21, 22
Vibration	Table 3.2.3	24
Other construction activities:		
Trenching, Rock placement, Tugs,		
Pipe laying, Diving support.	Table 3.2.4	25, 26
Dredging	Table 3.3.1	31, 32
Drilling	Table 3.4.1	37
Explosives	Table 3.5.1 - 4	40, 41, 42
Seismic exploration sound sources	Table 3.6.1	44
	Table 3.6.2	45-49
Shipping and small vessel noise		
Propellar tones	Table 3.7.1	53
Thruster noise	Table 3.7.2	55
Shipping and small vessel noise	Table 3.7.3	58-61
Hovercraft	Table 3.7.4	61
Snowmobile	Table 3.7.5	61
Sites	Table 3.8.1	68
Sonars and acoustic devices	Table 3.9.1	70, 71
Tools	Table 3.10.1	72
Other man made noise sources	Table 4.1	73
Natural noise sources		
Geological	Table 4.2	74
▲	- 7 -	
Seiche Measurements Limited – UK		

Biological	Table 4.3	75
Other useful literature		
Technical information and	specifications	
	Table 5.1	76
Reports Relating to underv	vater noise and the oil industry	7
	Table 5.2	77
Other literature relating to	underwater sound	
	Table 5.3	78

2.7 One Third Octave level

One third octave band measurements are used to represent the hearing ability of the mammalian ear. It can be defined as the frequency band whose upper limit is $2^{1/3}$ (1.26) times the lower limit; bandwidth is proportional to centre frequency. Three adjacent one third octave bands span are octave. Where available one third octave band measurements are presented in the report.

3 Oil Industry Noise Sources and Tables of Measurements

3.1 Aircraft

Little published primary source information is available for underwater noise produced by overflying aircraft, fixed or rotary wing, associated with current oil and gas industry activities. As such measurements have been included from all data found for aircraft including references from Marine Mammals and Noise (Richardson, Greene et al. 1995) where estimated source levels are presented for fixed wing and rotary wing aircraft.

The sound absorption in air is very dependent upon frequency and relative humidity and hence local air conditions will contribute significantly to the sound transferred into the water column. Appendix B Figure 2.6 shows the dependence of sound transmission through air on relative humidity and frequency. Low frequencies are transmitted well in air with typical attenuation values of 4dB/km at 1 kHz and 130dB/km at 10 kHz (Efroymson, Rose et al. 2000).

Sound from an airborne source is generally reflected from the water surface except for a cone of sound with a half angle of 13 degrees from the vertical. Much of the sound energy is reflected from the surface but sound pressure doubles as it transfers through the air to water interface. As the aircraft height increases the base area of the cone increases and the sound pressure level arriving at the water surface decreases. The zone of effect of an aircraft passing over an area of water induces sound into a strip of water the dimensions of which are proportional to the aircrafts height. Wave motion will add a variable which will extend the strips width. However for low frequency noise, generally, the sound wavelength is large compared to the wave height such that the water appears as a smooth surface, (Richardson 2006). See notes in Appendix A on acoustic impedance section 1.

Ice does not appreciably attenuate aircraft sounds at frequencies below 500 Hz (Efroymson, Rose et al. 2000).

Underwater sound caused by an overhead airborne source will be highest at the surface and decrease with depth. This seems also true for hovercraft (Richardson 2006). There is evidence that when the aircraft is not directly overhead sound levels may be higher at mid depths rather than close to the surface (Richardson, Greene et al. 1995).

At medium to long ranges the bottom reflection will be the dominant path by which an airborne source will reach a shallow hydrophone; this greatly extends the duration of the sound of the aircraft over a receiver in shallow water (Urick 1972).

The standard of altitude measurement for aircraft noise measurement in air is 300 m and Richardson suggests that this should be considered as the measurement altitude for the effect of aircraft generating underwater noise, however due to the few underwater measurements available and their lack of altitude information no standard seems to be applicable. In the study of helicopter noise for the proposed Lamma Island Heliport, BMT normalise their helicopter measurements to 150m. This may be a more meaningful altitude for helicopter measurements although too low for aircraft. A considerable amount of literature is available on the in air measurements of aircraft noise, in the absence of measured underwater data it is possible to estimate from the in air measurements the likely levels of underwater noise (see note in section 3.1.4).

3.1.1 Aircraft noise

Rotary turbines are likely to create sounds characterised by tones from several hundred Hz to above 1 kHz (Richardson, Greene et al. 1995) which are the fundamental and harmonics of the engine and proportional to the rotation speed and the number of blades on the turbine.

 $f = B * RPM / 60 \tag{3.1}$

Where f is the fundamental frequency Hz

B is the number of blades *RPM* the revolutions per minute of the turbine

The other major sources of noise are propellers or rotors, these also produce fundamentals and harmonics in accordance with formula (3.1) however the tones are usually below 500Hz (Richardson, Greene et al. 1995). In general, for reciprocating engine driven propeller aircraft a number of tones will be present relating to engine speed and propeller or rotor speed. The absence of rotary components in jet aircraft leads to a broadband noise extending to 5 kHz and higher, (Blackwell and C.R.Greene 2002).

3.1.2 Fixed Wing

The contribution of noise from fixed wing aircraft to the underwater noise generated by oil industry cannot easily be quantified but the contribution is most likely generated by the increased movement of transport planes or personnel into coastal airstrips. In general aircraft generate more noise on take off than cruising or landing. (Richardson 1995)

Few measurements are available for relevant aircraft however all details of measurements made on fixed wing aircraft available are presented in table 3.1.1 Not all the information available indicates the height of the aircraft above sea level however the comparison between the in air measurement and the underwater measurement is of interest and has been used to show a simplistic relationship between in air and in water measurements.

3.1.3 Rotary Wing

From 1976 up to year-end 2002, just over 48 million passengers were transported to and from offshore installations on the UKCS (UK Continental Shelf). Over 6 million sectors were flown taking about 2.7 million flying hours. In 2002 some 160,000 sectors were flown transporting over 1.5 million passengers offshore, and sector flight times averaged just over 30 minutes (UK HSE 2002). Given this level of activity it is surprising that few measurements have been made of the underwater noise generated by helicopters.

Helicopter noise tends to have a pulsating quality caused by the blade passing frequencies of the rotors. Under certain conditions, this can become pronounced and is termed 'blade slap'.

The forward motion of a helicopter in normal flight results in variations of blade speed through the air during each rotation formed by a combination of the forward speed of the aircraft and the rotation of the blade. This variation of blade speed through the air results in complex noise propagation. This effect applies to both the main and tail rotor. There is also an interaction between noise produced by main and tail rotors.

The main contribution of helicopters to underwater noise is likely to be on the approach to and take off from platforms or large vessels with helicopter pads. Again information is sparse however (Richardson 1995) gives some information on helicopter noise which is given in table 3.1.2.

The data available does not reflect current helicopters in use by the oil industry (table 3.1.3) however some information is available on in air noise levels from current helicopters making an assessment of the underwater noise impact possible but speculative. Table 3.1.4 gives a list of in air measurements of two helicopters measured near Hong Kong International Airport on a concrete helipad.

Table 3.1.1 Fixed Wing Aircraft

Aircraft detail	In air measurement ^{1 2} dBA Reference Unit = 20 mPa	In air measurement bandwidth Hz	Underwater ³ measurement broadband dB re 1 µPa rms	Underwater measurement bandwidth Hz	Aircraft Position ⁴	Tones	Reference
F-15	95	20 to 18000	134	4 to 20000	Overhead (90 degrees)		(Blackwell and C.R.Greene 2002)
Boeing 737	84	20 to 18000	110	4 to 20000	45 Degrees		(Blackwell and C.R.Greene 2002)
Boeing 747	95	20 to 18000	123	4 to 20000	60 Degrees		(Blackwell and C.R.Greene 2002)
C-5		20 to 18000	111	4 to 20000	70 Degrees		(Blackwell and C.R.Greene 2002)
DC-6	86	20 to 18000	119	4 to 20000	25 Degrees		(Blackwell and C.R.Greene 2002)
DC-10	84	20 to 18000	124	4 to 20000	Overhead (90 degrees)		(Blackwell and C.R.Greene 2002)
B-N Islander			142 dB re 1 μPa rms m measurement details unknown		Altitude 152m	Propeller 68 -74 Hz Piston engine 102 Hz	(Richardson, Greene et al. 1995)
Twin Otter			147 dB re 1 μPa rms m measurement details unknown		Altitude 457 m	Propeller 82-84 Hz	(Richardson, Greene et al. 1995)
P-3 Orion			162 dB re 1 μPa rms m	50 to 5000	Altitude 76 m	Propeller 68 Hz	(Urick 1972)
Grumman Turbo Goose						Propeller 68 Hz	(Richardson 1995)

12

 1 Measured at 1.5 to 2m above water surface 2 A weighted dB re 20 μPa

◄

Table 3.1.2 Rotary wing aircraft

Aircraft	In air	In air	Underwater	Underwater	Aircraft	Tones	Reference
detail	measurement	measurement	measurement	measurement	Position	Hz	
		bandwidth	broadband	bandwidth			
	dBA		dB re 1 µPa rms	Hz			
		Hz					
Bell 212			149 dB re 1 µPa		Altitude 152 m	10.8 + harmonics	(Richardson 1995)
			rms m				
Bell 214						11.8 + harmonics	(Richardson 1995)
ST							
Sikorsky						68 and 102	(Richardson 1995)
61							

-

³ Hydrophone depth of 10 or 6m
 ⁴ Angle relative to the horizon, 90 degrees being overhead.

TYPE	WEIGHT CLASS	INTRODUCED	WITHDRAWN
Bell 212	Medium	Pre 1975	2000
Bell 214 ST	Heavy	1982	Still in Service
Boeing BV234 (Chinook)	Extra Heavy	1980	1989
Eurocopter B105	Light	1977	2001
Eurocopter AS330 (Puma)	Medium	1977	1985
Eurocopter AS332 (Super	Heavy	1982	Still in Service
Puma)			
Eurocopter AS365 (Dauphin)	Medium	1979	Still in Service
Sikorsky S58	Medium	Pre 1975	1980
Sikorsky S61	Heavy	Pre 1975	Still in Service
Sikorsky S76	Medium	1980	Still in Service
Westland 30	Medium	1982	1991
Westland Wessex 60	Medium	1975	1981

Table 3.1.3 Helicopters in service in 2002. Source (UK HSE 2002)

Aircraft Type	Operation	Maximum values in air	Reference
		Normalised to 150m	
		Lmax $dB(A)^5$	
EC155 B1	On ground idling	80	(BMT 2005)
	Hovering	86.3	(BMT 2005)
	Touch down	80.2	(BMT 2005)
	Lift off	87.7	(BMT 2005)
Super Puma AS332 L2	On ground idling	82	(BMT 2005)
	Hovering	90.6	(BMT 2005)
	Touch down	Not available	(BMT 2005)
	Lift off	89	(BMT 2005)

 Table 3.1.4 In air helicopter noise

The frequency analysis of the helicopter underwater noise show apparently harmonically related components however due to the complex and unsteady interaction of the rotor blade vortices frequency characteristics rapidly change with time. (Dwyer 1984)

From table 3.1.1 it can be seen that typically, the noise level in water (dB re 1 μ Pa broad band) is approximately 33 dB +/-7dB above the level measured in air (dB (A) re 20 μ Pa). This is close to the theoretical value of 32dB which is:

6dB at air to water interface + 26 dB change in reference level (20 μ Pa to 1 μ Pa) = 32 dB

This only applies for a limited frequency range due to the A weighting scale of the in air measurements, which attenuates sound at frequencies <1 kHz. A-weighting emphasizes sounds at frequencies between 1 and 6 kHz, further affecting the comparison.

3.2 Construction

This topic covers the following areas; pile driving, trenching, rock placement, tugs, pipe-laying and diving support. Shore based construction work has few measurements, these are considered in section 3.8 (Sites).

As the construction activities often directly interact with the seabed and geological structures, sound is often transmitted directly through the seabed and can be identified as a separate pressure wave arriving before the water borne noise.

The majority of information on construction activities relate to pile driving in a wide range of environments and with many types of pile. Different piles driven by different methods into a variable sea bed give rise to a wide range of results, in general the larger the diameter of the pile

⁵ Measurements were made above a hard concrete surface

the higher the noise level produced, see figure 3.2.3. Two main types of pile driving are reported, impact and vibratory although others exist, limited measurements are available.

3.2.1 Impact pile driving

Impact pile driving has three sub categories; drop weight, diesel, and hydraulic.

- a) Drop Weight, a mass with approximately the weight of the pile is raised a suitable height and released to strike the pile head which may be cushioned.
- b) Diesel, the diesel hammer employs a ram which is raised by explosion of injected diesel in the base of the ram cylinder, just as in a diesel engine.
- c) Hydraulic, a hydraulic ram is used to increase the effect of the drop weight.

The noise generated by impact pile driving extends in frequency from 10 Hz to 120kHz (McHugh, McLaren et al. 2005). The noise from the pile driver may vary by as much as 18dB at 2000m from the source depending upon the sea-bed conditions (Maxon and Nielsen 2000). The rms values seem constant with depth (water depth 95m) however peak values vary with depth (McHugh, McLaren et al. 2005). Pulse duration is related to, and increases with distance from the pile (Blackwell, Greene et al. 2004). Figure 3.1 shows an impact pile driver being prepared for operation in Milford Haven.

It should be noted that the pressures associated with pile driving can be both positive and negative, for example a peak positive pressure of 130 kPa can be associated with negative pressures of -85kPa (measured ar 1m). (Vagle 2003)

Figure 3.1 Impact pile driver being prepared to be placed onto pile

A summary of measured underwater sound levels near marine pile driving for activities in the USA is given in table 3.2.1 (Hastings and A.N.Popper 2005) and a review of published papers is

given in table 3.2.2. The impact pile driving table is arranged in order of ascending pile diameter.

3.2.2 Vibratory pile driving

A vibratory pile driver is usually hydraulically powered although some electrically driven units are available. The majority of vibrators operate at frequencies between 20 and 40 Hz and can generate centrifugal forces of up to 4 000 kN.

The driving unit consists of contra-rotating eccentric masses which are in a housing attached to the pile head. These devices are used for normal circular piles as well as sheet steel piles. The intensity of ground vibrations which can occur under unfavourable conditions when using incorrect driving procedures or inappropriate equipment, can be a limiting factor. A summary of the information available is given in table 3.2.3. Figure 3.2 shows vibratory pile driving in progress in shallow water in Milford Haven.

Figure 3.2 Vibratory pile driving in progress

3.2.3 Mitigation of pile driving activities

As with all forms of waterborne activity there is a possibility that tones will be present from depth sounders or underwater instrumentation associated with vessels operating in the area. (see section 3.9)

The use of bubble curtains reduces the sound level transmitted through the water column (Wursig, Greene et al. 1999). These have been evaluated showing that the largest reduction in sounds (8 to 20 dB) were over the range 400 to 6400 Hz (David 2006) although mixed results were obtained by (Vagle 2003), suggesting that the use of bubble curtains is uncertain. Marine mammal observers and passive acoustic monitoring may be required for mitigation before and during the pile driving activity

3.2.4 Other construction activities

Data for other construction activities is scarce, however table 3.3.4 gives some information on trenching, rock laying, pipe-laying and tug activity associated with crane manoeuvring. In general, the noise associated with thrusters used for manoeuvring vessels or machinery are the most significant levels of noise (Blackwell and Greene 2005). Section 3.6 considers thruster noise levels in detail

Table 3.2.1 Construction: Various Impact Pile Driving Measurements

Summary of Measured Underwater Sound Levels Near Marine Pile Driving (Hastings and A.N.Popper 2005)

Pile Type	Distance from Pile (m)	Peak Pressure (dB re 1 μPa)	RMS (impulse) Pressure (dB re 1 μPa)	SEL (dB re 1 μPa2-s)	Extrapolated Peak to peak (dB re 1 µPa)
- Various Projects					
Timber (12-in) Drop	10	177	165	157	203
CISS ⁶ (12-in) Drop	10	177	165	152	203
Concrete (24-in) Impact (diesel)	10	188	176	166	214
Steel H-Type Impact (diesel)	10	190	175	-	
CISS (12-in) Impact (diesel)	10	190	180	165	216
CISS (24-in) Impact (diesel)	10	203	190	178	229
CISS (30-in) Impact (diesel)	10	208	192	180	234
- Richmond-San Rafael Bri	dge				
CISS (66-in) Impact (diesel)	4	219	202	-	237
CISS (66-in) Impact (diesel)	10	210	195	-	236
CISS (66-in) Impact (diesel)	20	204	189	-	236
- Benicia-Martinez Bridge		II		1	
CISS (96-in) Impact Hydraulic)	5	227	215	201	247
CISS (96-in) Impact (Hydraulic)	10	220	205	194	246
CISS (96-in) Impact (Hydraulic)	20	214	203	190	246
- SFOBB East Span ⁷		ı		1	

⁶ CISS is Cast In Steel Shell pile.

⁷ SFOBB is San Francisco-Oakland bay Bridge

CISS (96-in) Impact	25	212	198	188	246
(Hydraulic)					
CISS (96-in) Impact	50	212	197	188	252
(Hydraulic)					
CISS (96-in) Impact	100	204	192	180	250
(Hydraulic)					

3.2.2 Construction: Impact Pile Driving

Source	Туре	Size	Repetition	Water	Measurement	Measurement	Extrapolation ⁸	Characteristic	Reference
Туре			rate	depth		Bandwidth	dB re 1 µPa m		
			Blows/sec	m		kHz	peak to peak		
Pile driving	Hammer	0.75m diameter	0.38	95	153db rms @	? to 100	216 ⁹	Mean pulse duration	(McHugh,
Impact		steel			0.535 km			200ms^{10}	McLaren et
		22m long			168dB peak @			Duty cycle 7.83%	al. 2005)
					0.535 km				
Pile driving	Hammer	4m diameter	0.55	9	262 dB re 1 μPa	0.01 to 150	262	Pulse duration est. at	(Nedwell,
Impact	(Menck	steel			m			300ms at 1881m	Turnpenny
	MHU500T)	wall thickness			Peak to peak			Tonal content prob. due	et al. 2003)
		35mm						to ringing of pile. Most	
		length 50m						of energy is between	
D'1 1 ' '				-	204 ID 4 D	0.001 / 20	226	40Hz and 1 KHz	
Pile driving				5	$204 \text{ dB re I } \mu\text{Pa}$	0.001 to 20	236		(Maxon and
Impact					Peak @ 30m				2000)
Dilo Driving	Hommor			190	246 dD = 1 dD		255		(Nadwall
Impost	nainnei			160	240 dB re 1 µPa		233		(Neuwen
Impact					Source level				2004
Pile driving	Hammer	2 4m diameter			240 dB re1 uPa		249		(Nedwell
Impact	1000kI	steel			Source level		249		and Edwards
Impuot	100010	51001			Bouree level				2004)
Pile driving	Hammer 1000 kg	0.2m diameter	0.2	2	32000 Pa peak	0.050 to	210		(Vagle
Impact	Drop 4m (max)	cedar			to peak @ 1m	22.050			2003)
-	80kJ				-				
Pile driving	Hammer 1000 kg	0.2m diameter	0.2	2	31000 Pa peak	0.050 to	210		(Vagle
Impact	Drop 4m (max)	steel			to peak @ 1m	22.050			2003)
	80 kJ	4.7 mm							
		thickness							
Pile driving	Hammer 1000 kg	0.3m diameter		3m to 15m	32000 Pa peak	0.050 to	208		(Vagle
Impact	Drop 4m, 80 kJ	steel		down slope	to peak at 50 m	22.050	11		2003)
Source	Туре	Size	Repetition	Water	Measurement	Measurement	Extrapolation ¹¹	Characteristic	Reference
Туре			rate	depth		Bandwidth	dB re 1 µPa m		
			Blows/sec	m			peak to peak		
Pile driving	Hammer 7000 kg	0.508m			79000 Pa peak	0.050 to	217		(Vagle
Impact	Drop 3m typical	diameter			to peak at 1m	22.050			

	210 kJ typical								2003)
Pile driving Impact		1m diameter steel Closed end			250000Pa peak to peak		228	Pulsed	(Vagle 2003)
Pile Driving Impact	Hammer (Menck) Hydraulic Impact Hammer		0.33	Shallow river Tidal Water	192 dB re 1 µPa Peak Source level		198	Pulsed	(Nedwell and Edwards 2002)
Pile Driving Impact		2.5m dia 8mm thick 50m long	0.42	133	241 dB re 1 µPa positive peak at 1m	0.002 to 20	247	Pulsed	(Barbagelata 2004)
Pile driving Impact		4.7m diameter		10m	250 dB re 1 μPa peak to peak		250	Pulsed	(Parvin 2006; Parvin and Nedwell 2006)
Pile driving Impact	BSP357/9 Hydraulic drop hammer			Shallow water		0.005 to 120	194	Pulse	(Nedwell, Turnpenny et al. 2003)
Pile driving Impact	Driving steel sheets by land based equipment			Shallow water	136.1 dB re 1 μPa peak 124.7 dB re 1 μPa rms at 730m	0.02 to 10	172	Impulsive ¹²	(Greene, Blackwell et al. 2007)
Pile Driving Impact		1.5m diameter	1	30	228 dB re 1 μPa 0 to peak	0.03 to 20	234	Pulsed Peaks at 125, 315 and 1000 Hz	(Thomsen, Ludemann et al. 2006)
Source Type	Туре	Size	Repetition rate Blows/sec	Water depth m	Measurement	Measurement Bandwidth kHz	Extrapolation ¹³ dB re 1 μPa m peak to peak	Characteristic	Reference
Pile Driving Impact	DelMag D62-22 Diesel Driven hammer of 12930kg Energy per blow 224 kJ	0.51 diameter pipe	0.6 to 0.833	9	174.5 dB re 1 μPa 0 to peak @ 1m 171.7 dB re 1 μPa SPL @	0.04 to 10	180	Pulsed Peak Sound pressure between 20 and 40 Hz Falling at approx 40dB per decade	(Blackwell, Lawson et al. 2004)

- 22 -

					1m 170.1 dB re 1 µРа SEL @ 1m			Pulse duration related to distance	
Pile Driving Impact	DelMag D62-22 Diesel Driven hammer of 12930kg Energy per blow 224 kJ	1.07m diameter pipe	0.6 to 0.833	9	199.6dB re 1 μPa 0 to peak @ 1m 195.7 dB re 1 μPa SPL @ 1m 190dB re 1 μPa SEL @ 1m	0.04 to 10	206	Pulsed Peak Sound pressure between 20 and 40 Hz Falling at approx 40dB per decade Pulse duration related to distance	(Blackwell, Lawson et al. 2004)
Pile driving ¹⁴ hydraulic	Driving steel sheets by land based equipment			Shallow water	 113 dB re 1 μPa rms at 1m average 127 dB re 1 μPa rms at 1m peak 	0.02 to 150	122 Average 136 Peak		(Nedwell, Macneish et al. 2005)

Prediction of impact pile driving noise levels may be thought to depend upon size of the pile, energy with which the impact occurs and geological conditions. However by plotting the extrapolated values of the peak to peak sound pressure level at one metre and the pile diameter an approximate relationship can be seen (figure 3.3) which corresponds to the equation:

$P = 230.25 * D^{0.0774} \quad (3.2)$

WhereP is peak to peak pressure in dB re 1mPa at 1mD is the pile diameter in m

Whilst this approximation is not tested it appears to match the reported measurements reasonably well as shown in figure 3.3.

Figure 3.3. The relationship between pile diameter and peak to peak sound pressure level (x is the pile diameter in metres and y is the peak to peak sound pressure)

Source Type	Туре	Size	Vibration	Water depth	Measurement	Measurement	Extrapolation ¹⁵	Characteristic	Reference
			frequency			Bandwidth	dB re 1 µPa m		
						m	peak to peak		
Pile driving	PVE 2316 VM			Shallow water		0.005 to 20	Below noisy	Continuous	(Nedwell,
Vibration							ambient		Turnpenny
							conditions at		et al. 2003)
							417m		
Pile Driving	PTC 60 HD		27 Hz	Shallow river	152dB re 1 µPa		161 ¹⁶	Continuous	(Nedwell
Vibration	Vibro Driver			Tidal Water	rms @24m			Dominant	and
								frequency 27Hz,	Edwards
								the vibratory	2002)
								frequency of the	
								pile driver	
Pile Driving	Driving steel		24 Hz	12 m	143 dB re		182	Continuous	(Greene,
Vibration	sheets by land				1 μPa rms @			Tone at 24Hz	Blackwell
	based				100m				et al. 2007)
	equipment								

Table 3.2.3 Construction: Vibration Pile Driving.

Insufficient data is available to draw any conclusions as to the relationship between pile size, geology, vibration levels and extrapolated sound levels.

Table 3.2.4 Construction: other activities

Source Type	Туре	Size	Activity	Water	Measurement	Measureme	Extrapolation ¹⁷	Reference
•				- 2	25 -			
Seiche Measure	ements Limited – UK							Ref S186

				depth		nt	dB re 1 µPa m	
				m		Bandwidth	peak to peak	
Trenshing				Vere	102 ID 1 D	KHZ	170	(N. d11
I renching				very	$123 \text{ dB re I } \mu\text{Pa}$	0.01 to 150	160	(Nedwell,
(cable)				snallow	SPL @ 160m			2003)
Rock Placement	Rock placement in 60			60 to 70	Measurement below			(Nedwell and
	to 70 m				ambient noise			Edwards 2004)
Tugs	Manoeuvring			shallow	144dB dB re 1 µPa		170	(Richardson 2006)
	Sealift barge				$@ 60m^{18}$			
Pipe laying	Pipe carrying ability			Approx 30		0.001 to 100	Noise peaks at 200Hz	(Nedwell and
	of 15000 tons						probably thruster related	Edwards 2004)
Pipe laying	Semi submersible	188m length	Winch	68	182.2 dB rms re	0.01 to 10		(Austin 2004)
barge		54.9m beam	pulling in		1 µPa @ 1m			See figure 3.5
		12 anchor points	AHT ¹⁹		Peak at 250 Hz		191	
		each 22 tons			during anchor			
					manoeuvring			
			Anchor		180 9 dB rms re			
			Pull out		$1 \mu Pa @ 1m$		190	
					Peak at 250 Hz			
					during anchor			
					manoeuvring			
			Winching		manoeuvinig			
			Forward		174.2 dB rms re			
					$1 \mu Pa @ 1m$		183	
					1 μια @ 111			
			Normal		170.2 dB rms re_uPa			
			operations		@ 1m		179	
Source Type	Туре	Size	Activity	Water	Measurement	Measureme	Extrapolation ²⁰	Reference
			-	depth		nt	dB re 1 µPa m	
				m		Bandwidth	peak to peak	
						kHz	• •	
Pipe Lay Vessel	Self propelled crane	191m long		65.5	182.32 dB rms re	0.01 to 20	191	(MacGillivray and
	and pipe-lay vessel	35m beam			1 μPa @ 1m			Racca 2006)
					Highest level			
					measured during			

				operation of crane. Propulsion system not measured			
Dive Support Vessel	Dynamically positioned	107m long 35m beam	60	178.2 dB rms re 1 μPa @ 1m	0.01 to 20	187	(MacGillivray and Racca 2006)
				Thrusters operating at 20% to 30% of maximum thrust which is a typical level			

- 28 -

Figure 3.6 Third octave band analysis of pipe laying barge during crane operation(MacGillivray and Racca 2006)

3.3 Dredging

Dredgers can be categorised into three broad classifications (Mason 2004):

Mechanical dredges Hydraulic dredges Mechanical /hydraulic dredges which utilize both elements in combination.

3.3.1 Mechanical dredges

These use mechanical gear to lift up level sections of the sea bed, typically these include:

Grab or clamshell and dragline Backhoe Dipper Bucket ladder Propeller wash Bed leveller

The most detailed underwater sound information is on grab or clamshell dredging which is given at the end of table 3.3.1.

The sounds generated by the bucket dredging operation can be characterised by a series of repetitive sounds (Dickerson, Reine et al. 2001);

Variable sound as winch operates and derrick and bucket swing into position

Impact as bucket hits sea bed

Grinding sound as bucket is closed and dredged material removed

Noise associated with closure of bucket jaws

Variable sound as winch operates and derrick and bucket swing into position over barge Material being dumped into barge

3.3.2 Hydraulic dredges

Hydraulic dredges use pumps to provide the excavating and transport force to carry slurry solids from the excavation site to a discharge site or barge.

Typically these include:

Transfer dredges, which are moored and extend suction pipes to the sea bed and discharge into a barge or pump to another site.

Dustpan

Water injection

3.3.3 Mechanical/Hydraulic Dredges

These are the main dredges in use and are of two types:

a) Cutter head and bucket wheel dredges.

These use a cutter head to loosen the sea bed and then a suction pipe to pump the slurry to a discharge site.

b) Trailing suction hopper dredges.

These vessels use suction pipes to remove the sea bed and then store the slurry in hoppers on the vessel, it then moves to empty the hoppers at the discharge site.
3.3.4. Noise variation

The noise produced by the dredgers depends on their operational status, sea bed removal, transit and dumping. The table includes a column stating the activity of the dredger during the measurement. In general the noisiest activity is associated with the seabed removal.

Table 3.3.1 Dredging noise

Source Type	Description	Capacity	Activity	Water depth	Measurement re 1 µPa	Measurement Bandwidth	Extrapolation ²² dB re 1 μPa m	Characteristic	Reference
Transfer dredge	Cutter suction	$60 - 100 \text{ k} m^3$	Dredging	<u>m</u> 13	133 dB rms @ 0.19 km ²³	kHz 0.020 to 1	peak to peak 176		(Greene 1987)
Transfer dredge	Cutter suction	$100 \text{ k} m^3 \text{ per}$ day	Dredging	46	140 dB rms @ 0.2 km	0.020 to 1	189		(Greene 1987)
Hopper dredge	11.1 MW power	8000 m ³	Loading	20	142 rms @ 0.93 km	0.020 to 1	194	Continuous No strong tones Roll off 20dB/oct above 1kHz	(Greene 1987)
Hopper dredge	11.1 MW power	8000 m ³	Underway	20	127 rms @ 2.4 km	0.020 to 1	183	Continuous Tones at 55,, 278, 1030 Hz	(Greene 1987)
Hopper dredge	11.1 MW power	8000 m ³	Pumping out	13	117 rms @ 13.3 km	0.020 to 1	180	Continuous No strong tones Roll off 20dB/oct above 1kHz	(Greene 1987)
Hopper dredge		$8000 m^3$	Loading	21	138 rms @ 0.43 km	0.020 to 1	187	Continuous	(Greene 1987)
Hopper dredge		$8000 m^3$	Underway (loaded)	25	150 rms @ 0.46 km	0.020 to 1	200 ²⁴	Continuous Tone at 811Hz	(Greene 1987)
Hopper dredge		$6000 m^3$	Dumping	12	131 rms @ 1.5 km	0.020 to 1	183	Continuous No tones or strong peaks Dip at LF ²⁵	(Greene 1987)
Bucket Dredge (clamshell dredge)		Working on gravel	Bucket striking Channel bottom	10	124 rms at 1m	0.020 to 20	133	Repetitive Peak at 163 Hz	(Dickerson, Reine et al. 2001)
			Bucket digging		112 to 122^{26} rms at 1m		121 to 131	Peak at 40 Hz	,

Source Type	Description	Capacity	Activity	Water	Measurement	Measurement	Extrapolation ²²	Characteristic	Reference
				depth	re 1 µPa	Bandwidth	dB re 1 µPa m		
				m		kHz	peak to peak		
			Bucket closing		99 rms at 1m		108	Peak at 316 Hz	
			Winching in/out		116 rms at 1m		125	33 to 56 Hz	
			Dumping material into barge		109 rms at 1m Variable with material in barge		118 Variable with material in barge	Peak at 82 Hz	

JFJ de Nul Cutter Suction	Mechanical method of dredging, permitting CSD to work in harder soils/rock. Vessel can work in shallow Water to water depths of over 30m. Used normally for shore approaches. Vessel held on station by vertical pins which stab into the seabed, and are also used to pull the vessel forward.	1/3-octave source levels at stern of JFJ de Nul while dredging. BROADBAND LEVEL (dB re 1 μPa) = 182.9
Gerardus Mercator: Trailer Hopper Suction	Figure 3.7 Source (Hannay, MacGillivary et al. 2004) Trailer Hopper Suction Dredger (Hopper size: 18,000m3) using suction to remove large volumes of soil to excavate the seabed. Soil is stored on the side of the trench and is returned once pipeline has been installed. Vessel uses thrusters to maintain station. 27 Figure 3.8 Source (Hannay, MacGillivray et al. 2004)	 1/3-octave source levels at broadside of <i>Taccola</i> while dredging (Langworthy <i>et al.</i> 2004) BROADBAND LEVEL (dB re 1 μPa) = 180.4

- 34 -

-

Taccola: Trailer Hopper Suction Dredger	Trailer Hopper Suction Dredger Smaller version of Geradus Mercator (Hopper size: 4,400m ₃).using suction to excavate large volumes of soil to excavate the seabed. Spoil is stored on the side of the trench and is returned once pipeline has been installed. Vessel uses thrusters to maintain station.	Source Level (dB re µPa at 1 100 10 10 Frequency (Hz) 10 10 10 100 100 100 100 100
		 Figure: 1/3-octave source levels at broadside of <i>Taccola</i> while dredging (Langworthy <i>et al.</i> 2004) BROADBAND LEVEL (dB re 1 Pa) = 180.4
	Figure 3.9 Source (Hannay 2004)	
James Cook: Trailer Hopper Suction Dredger		1/3-OCTAVE SOURCE LEVELS NOT AVAILABLE
	Ice class Trailer Hopper Suction Dredger (Hopper size:1,870m ₃) ²⁸ using suction to excavate large volumes of soil to excavate the seabed. Spoil is stored on the side of the trench and is returned once pipeline has been installed. Vessel uses thrusters to maintain station.	

-

3.4 Drilling

The descriptive information below is adapted from the overview of offshore gas and exploration activities published by the UK Department of Trade and Industry (DTI), (DTI 2006). There are three types of drilling operations:

3.4.1 Drill-ship

These are based on a ship's hull adapted with a moon pool to allow the deployment of the drill though the hull. They are typically self powered and are not dependent on tugs maintaining position with DP and/or anchors. Drill-ships can operate in deep water however, because of the hull shape, they are more affected by wind and wave movement than semi-submersible rigs, and as a consequence would be more likely to suffer from weather down time. Exploration rigs are self-contained with their own power generation, utilities and accommodation facilities. Supplies are brought to the rig and wastes returned to shore by supply boat. Crew are transferred on and off the rig by helicopter. For safety reasons, a stand by vessel is deployed in the field for the duration of the drilling programme. A drilling derrick above the drill floor bears the weight of the drill string, which is a series of 9m long sections of hollow drill pipe screwed together and to the bottom of which the drill bit is attached. Additional sections of drill pipe are added to the drill string as the well is drilled deeper. The lower part of the drill string, adjacent to the drill bit, is comprised of a series of heavy drill collars to give added weight to the drill bit. The drill bit is rotated either by rotating the whole drill string by means of a rotary table on the drill floor/topdrive system, or by a down hole turbine powered by the flow of mud pumped down the hollow drill pipe.

Nedwell reports that the majority of noise from an operational drill ship was found to be in the band 40 to 600Hz, when measured at a range of 500m to 2km. At a range of 5km there was no perceptible noise above ambient, (Nedwell and Edwards 2004).

3.4.2 Jack-up rigs

Jack-up rigs are based on a buoyant steel hull with 3 or more lattice legs on which the hull can be "jacked" up and down. The rig is towed to location by 2 or more tugs with the legs jacked up so the hull floats. On reaching the drilling location the rig jacks its hull up the legs until the base of the legs are firmly in contact with the sea floor and its deck positioned above wave height. The rig's position is maintained by the legs which are in firm contact with the sea floor. No anchors are deployed, although in areas of strong seabed currents where sediment scour may be expected, gravel or rock may be dumped around the base of the legs to stabilise the sediments. Jack-up rigs are depth limited and can only operate in water depths of around 100m or less. These are the rigs which are most often used in the shallower waters of the southern North Sea.

3.4.3 Semi-submersible rigs

Semi-submersible rigs float at all times on pontoons and are the most likely rig type to be used in deep waters, mainly off the North sea. The rig is towed to location by two or more tugs. The pontoons contain ballast tanks, and the height of the deck above the sea surface can be altered by pumping ballast (sea) water in or out of the pontoons. During drilling operations, the deck is lowered but still kept above wave height. Rigs used in deep water or harsh environments, maintain position over the drilling location either by anchors (and where fitted, with rig thruster

assistance as necessary) or by dynamic positioning using a series of computer controlled thrusters. Rig anchoring typically involves the deployment by anchor handler vessel, of eight or more 12 tonne high efficiency seabed penetrating anchors. The anchors are attached to the rig by cable and near the anchor by chain, of which a proportion (a minimum of 100m) lies on the seabed (the catenary contact). Hauling in of the cables by the rig "sets" the anchors in the seabed after which minor adjustments to the rig position can be made by hauling in or paying out cable. The precise arrangement of anchors around a rig is defined by a mooring analysis which takes account of factors including water depth, tidal and other currents, winds and seabed features. The typical radius of anchor patterns for a semi-submersible drilling rig operating in a water depth of 100m is 1300 - 1400m. Anchors are retrieved by anchor handler vessels by means of pennant wires which slide down the cable towards the anchor allowing a more or less vertical retrieval, facilitating anchor breakout from the seabed. A semi-submersible rig is shown in figure 3.7.

Nedwell reports that drilling noise measured in 100m of water around a platform has been in the order of 10 to 20 dB above ambient noise over the frequency range 20Hz to 100Hz with clear evidence of tones at 130, 200, 350 and 600Hz which probably originated from resonant frequencies of the drill shaft. No noise from drilling could be detected below 10Hz. (Nedwell and Edwards 2004). When used, thrusters generated variable noise in the 2 to 30Hz band, the blade rate of the thrusters could clearly be identified.

Figure 3.11 The Molikpaq – A converted drilling rig that was first used in Arctic waters offshore Canada

3.4.4 Drill Island

Drill Islands are man-made structures in shallow water generally consisting of a reinforced steel and concrete construction with a surface deck containing living quarters, drilling rig and power units. Underwater detectable tones tend to be produced by power plant on the islands. (Blackwell, Greene et al. 2004), (Richardson et el. 1995)

Source Type	Description	Capacity	Activity	Water depth	Measurement Broad band	Measurement Band width	Extrapolation ²⁹ dB re 1 µPa m	Characteristic ³⁰	Reference
				m	re 1 µPa	kHz	peak to peak		
Drill ship	114.9 m long displacement 13 137 tons	7 diesel engines each 840 kW	Logging	17	125 dB rms @ 0.17 km	0.02 to 1	169	Continuous Tones up to 1850 Hz	(Greene 1987)
Drill ship	114.9 m long displacement 13 137 tons	7 diesel engines each 840 kW	Drilling	27	134 dB rms @ 0.2 km	0.02 to 1	180	Continuous with strong tones at 277 Hz	(Greene 1987)
Drill Ship	250m long		Drilling		195 dB rms at 1m	0.001 to 139	195	Continuous Majority of energy in 100 to 400Hz band	(Nedwell and Needham 2001)
Drill Barge	Conical drilling barge 80m diameter		Drilling	31	143 dB rms @ 0.98 km	0.02 to 1	197	Continuous No significant tones above 90Hz	(Greene 1987)
Drill Island	Caisson retained island		Drilling	29	130 dB rms @ 0.22 km	0.02 to 1	177	Continuous Extensive tones up to 5300Hz	(Greene 1987)
Drill Island	Gravel Island with production and drilling activities		Drilling	Under ice 12	124 dB rms @ 1km	0.01 to 10	155.5	Tones associated with power generation	(Blackwell, Greene et al. 2004)
Drill island	Concrete Island Drilling Structure		Idle	15	131 dB rms @ 1m	0.02 to 1	140^{31}		(Hall and Francine 1991)
Drill island	Concrete Island Drilling Structure		Drilling	15	124 dB rms @ 0.259 km	0.02 to 1	157 ³²	Continuous Strong tones at 1.375 to 1.5Hz ³³	(Hall and Francine 1991)
Drill rig	Exploration drilling rig		Working but not drilling	110	117 dB rms ³⁴ @125m	0.01 to 10	167	Continuous Machinery above waterline Noise due to various mechanical plant on deck	(McCauley 1998)
Source Type	Description	Capacity	Activity	Water depth m	Measurement Broad band re 1 μPa	Measurement Band width kHz	Extrapolation ³⁵ dB re 1 μPa m peak to peak	Characteristic ³⁶	Reference
Drill Rig	Exploration drilling rig		Drilling	110	115 dB rms ³⁷ @405m	0.01 to 10	170	Tones produced by drill string in 31 and 62Hz 1/3 octave bands	(McCauley 1998)
Drill Rig	Exploration drilling rig		Rig positioning tenders operating thrusters	110	137 dB rms ³⁸ @405m	0.01 to 10	192	Broadband noise produced by thrusters or main propellers under load	(McCauley 1998)
Semi- submersible	Drilling, oil production, and water injection		Generators and pumps	35	162.3 dB rms @ - 38 - _{1m}	0.01 to 10	171	Broadband noise	(Hannay, MacGillivray et

Seiche Measurements Limited – UK

Drill rig		operating continuously			al. 2004)
		eonanaoasij			

Figure 3.12 Third octave band levels for semi-submersible drill rig

3.5 Explosives

3.5.1General Use

Explosives are now rarely commercially used as an acoustic source; they are however used in construction projects for rock blasting and sometimes well head removal at the end of an oil rigs life

When an explosion is initiated a pressure wave propagates into the surrounding water. The shock wave is normally followed by a series of bubble pulses caused by successive oscillations of the gas volume that remains after the explosion. Bubble pulses do not occur if the gas bubble breaks the surface or if it is contained within a case. The pressure signature of an explosion consists of a shock wave followed by a series of smaller decreasing bubble pulses. In far field measurements the waveform is received after a surface reflection and therefore includes a negative going pulse as reflection of the initial shock pulse. The bubble oscillation frequency remains detectable at considerable distances. (Urick 1967), (Sulfredge, Morris et al.)

For unconfined TNT charges in deep water the peak pressure and impulse are given by:

Peak pressure = $2.16 * 10^4 * (w^{1/3} / r)^{1.13}$ (3.3) (Urick 1967)

w is charge weight in pounds, r is range in feet and *Peak pressure* is in pounds per square inch

Converting equation 3.3 to SI units gives

Peak pressure =
$$5.26 \times 10^7 \times (w^{1/3} / r)^{1.13}$$
 (3.4)

Where: w is charge weight in kgs, r is range in m and *Peak pressure* is in Pascals

Figure 3.13 Peak pressure produced by 1Kg of TNT

The Impulse produced by a charge is given by the equation

Impulse = $6 * 10^3 w^{0.63} r^{-1.13}$ Pa sec (3.5) (Nedwell and Edwards 2004)

Where: w is the charge weight in kgs, r is range in m and *Impulse* is in Pascal seconds

For confined charges (such as boreholes)

Peak pressure = $2.5 * 10^6 * w^{0.27} * r^{-1.13}$ Pa (3.6) Impulse = $1.8 * 10^3 w^{0.63} r^{-0.89}$ Pa sec (3.7)

It should be noted that the peak pressure is proportional to the weight (w) of the charge to the power of 0.27 such that the weight of the charge has a relatively small effect on the peak pressure. Nedwell reports that from experience these results tend to significantly overestimate levels for shallow water (measured values typically 30% to 37% lower than calculation for unconfined charges).

Measurements reported by Nedwell in table 3.5.1 show the sound pressure levels received from a series of buried explosive charges in shallow water. The complex propagation path, being both water and seabed propagation makes any accurate determination of source level problematic. Significant variability is a normal feature of the received levels of explosive detonations, (Nedwell and Edwards 2004).

Nedwell also found that charges placed in well head pipes behaved more like unconfined charges than confined charges. The following tables summarise measurements made under various conditions in which the charge was buried below the sea bed.

Charge	Charge	SPL at	SPL at	
weight	depth	Range	Range	
_	_	470m	1900m	
kg	m	dB re1 µPa	dB re 1 µPa	
0.2	3	169.3	n/d ³⁹	
0.4	11	172.2	n/d	
0.6	6	146.2	n/d	
0.6	2	163.1	n/d	
0.6	6	168	n/d	
0.6	3	171.1	n/d	
0.8	15	172.2	n/d	
1	?	171.6	142.0	

Table 3.5.1 Sound pressure levels at two ranges produced by various charge sizes and depths
in boreholes in the sea bed (Nedwell and Edwards 2004).

 Table 3.5.2 Sound Pressure level produced by a small explosive charge

Charge	Charge type	Measured	Extrapolated	Source
weight		SPL	Peak to peak	
		dB re	dB re 1 µPa at	
		1 μPa at	1m	
		1m		
25g	Perchlorate	226.9	236	(Nedwell
	based			and
				Edwards
				2004)

Table 3.5.3 Measurements made of seabed surface placed charges	s (Nedwell and Edwards
2004)	

Charge	Water	Measurement	Peak Pressure	Peak	Peak to Peak pressure	Peak to Peak pressure
Kg	depth	Range	6m depth	Pressure	6m depth	12m depth
	m	m	kPa	12m depth	1000m range	1000m range
				kPa	dB re 1 µPa	dB re 1 µPa
2	22	1000	7	5.8	203	201
2	22	1000	8.4	7.2	204	203
2	22	1000	5.9	6.1	201	202
2	22	1000	5.5	7.7	201	204
4	22	1000	8.8	8.2	205	204
4	22	1000	7.8	9.1	204	205
4	22	1000	8.4	10.2	204	206

3.5.2 Well head decommissioning

The removal of well heads is carried out using explosives or using cutting tools. No measurements of noise have been found for the use of cutting tools However in 2000 to 2001 Nedwell (Nedwell and Edwards 2004) reports on measurements made during explosive severance in the North Sea in water depths of 91 to 116 m using a charge of approximately 45kg. The slave station was a sea bed mounted instrument. The experimental results are closer to an unconfined explosive charge rather than a confined charge. The measurements are given in table 3.5.4.

Connor gives a detailed report on the explosive decommissioning of a hydrocarbon production platform in the Gulf of Mexico, (Connor 1990). Two types of explosive placements were used in open ended pipes (end above water level) and below water level ends. All the below bottom severance detonations produced direct shock wave pulse and a pulse from the explosion product bubble collapse. The peak overpressure of the direct shock was found to be two to ten times greater than the bubble pulse.

Table 3.5.4 Explosive charges used for well head decommissioning.

	Charge	Receiver	Peak	Receiver	Peak	Slave	Slave	Peak to peak
Range	size	1 depth	pressure	2 depth	pressure	station	station	At given range
						Depth	peak	
m	Kg	m	kPa	Μ	kPa	m	kPa	dB re 1 µPa
75	45					116	236	227
125	45					87	201	226
200	45					110	169	225
300	45					91	392	232
300	45					84	312	230
400	45					108	147	223
575	45	30	37					211
575	45			25	36			211
600	45	40	47					213
600	45	35	51					214
600	73	30	100					220
600	81	30	53					214
600	45	30	52					214
600	81			25	57			215
600	45			25	50			214
650	73	25	198					226
650	45	40	63					216
650	45	35	75					218
650	45	40	83					218
650	45			35	80			218
650	45	40	54					215
650	45			35	68			217
650	45	40	115					221
650	45	35	130					222
650	36	30	118					221
650	36			25	130			222
650	45	30	77					218
650	45			25	74			217
800	36	30	117					221

Based on measurements by (Nedwell and Edwards 2004)

3.5.3 Mitigation.

Bubble curtains were experimented with by Nedwell on a rock blasting site in Spain. The report does not give detail information on the bubble curtain but states that it was not as effective as hoped, (Nedwell and Edwards 2004). In general mitigation is by the use of Marine Mammal Observers (MMO) and by passive acoustic monitoring.

Under the E & P sound and marine life programme the Joint Industry Programme (JIP) are sponsoring Mitigation & monitoring procedures.

3.6 Seismic Exploration Sound Sources

Seismic exploration sound sources may be used to investigate shallow subsoil structure for engineering site work, or deeper structures usually in the search for oil. The returning signals from the sources are detected by hydrophones trailed behind the survey vessel in known locations relative to the position of the source. The recorded signals are then subjected to specialist analysis and processing to yield information on the subsea-bed structure.

The type of source is chosen to suit the survey requirement;

Low frequency sources (such as air guns) produce low frequency energy which penetrate the seabed to considerable depths (many kilometres) and is then reflected by the geological layers and then received by the survey hydrophone arrays. This type of source is used for oil exploration

High frequency sources such as sparkers and boomers do not penetrate the sea bed to a significant extent (typically hundreds of metres) but produce high resolution information about the sub surface properties of the seabed. These sources are used for high resolution surveys of the sea bed for placement of structures etc.

A brief summary of the most common sources is given below.

3.6.1 Airgun sources

These are the most common and the most powerful of the low frequency sound sources used for seismic exploration. The air guns produce high levels of low frequency sound by releasing controlled volumes of high pressure air into the water creating an oscillating bubble which produces 90 per cent of its energy in the band 70 to 140 Hz (van de Sman 1998). The air guns are formed into an array to produce a low frequency beam of energy toward the sea floor. It is likely that other beams of energy are formed in various directions depending on frequency at a range of frequencies up to 100 kHz.

The frequency spectrum generated by the airguns will be dependent upon the depth at which they are deployed. The high acoustic impedance of the water surface to air interface creates a mirrored signal of opposite phase and destructive interference will occur where the direct signal and the surface reflected signal are out of phase in shallow deployment giving broader bandwidth but reduced total energy output the normal operating depth for air gun arrays is between 5 and 7 m (Gausland 1998)

Evidence shows that the air guns produce energy above background noise up to frequencies in excess of 22 kHz at range of 2 km and frequencies in excess of 8 kHz at ranges of 8 km (Goold and Fish 1998)⁴⁰. There is evidence that the low frequency content of air gun pulses can be detected at ranges of 3000km (Nieukirk, Stafford et al. 2004).

The levels of noise measured around the air guns will depend greatly on the air gun array configuration and the local ocean conditions, (DeRuiter, Tyack et al. 2006). It is likely that the sound propagation will vary considerably from site to site and detailed knowledge of the geographic and oceanographic parameters will be required for accurate modelling (McCauley,

Fewtrell et al. 2000). Each exploration company may use a number of gun array configurations, depending upon the survey requirements, and as such the source values must be considered as indicative only.

The relationship between the total volume of air discharged and the resulting Sound Pressure Level (SPL) is of the nature

 $SPL = kV^{2.4}$ (3.8) (Nedwell, Needham et al. 1999)

where k is a constant and V is the total volume of air

And / Or

 $SPL = KPNV^{1/3}$ (3.9) (Hildebrand 2006)

Where: K is a constant, P is the air pressure, N is the number of guns and V is the total volume of air

The Rayleigh Willis equation for the bubble oscillation period is given by

$$T = k \frac{P^{1/3} + V^{1/3}}{\left(P_{atm} + \rho g D\right)^{5/6}} \quad (3.10)$$

Where T is bubble oscillation period, P is the gun pressure, V is the gun volume, P_{atm} is atmospheric pressure, ρ is the density of water, g is gravitational acceleration, D is the depth of the gun, and k is a constant.

A set of experimental data on a three string 3147 cu inch seismic survey in the Chukchi Sea gives a comprehensive study of the sound output from an airgun array, (Patterson, S.B. Blackwell et al. 2007). The study used bottom mounted hydrophones in 42m of water. The table below relates Peak pressures, Sound Pressure Levels (SPL) and Sound Exposure Levels (SEL) for Bow, stern and broadside measurements

Table 3.6.1 Table of sound output of a 3147 cubic inch air gun array (Patterson, S.B. Blackwell et al. 2007).

		dB re 1m	Measurement Ranges	Sample size
Bow	Peak	266.4	0.35 to 30.6 km	391
	SPL	249.5		
	SEL	224.6		
Stern	Peak	249.8	0.3 to 33.9 km	232
	SPL	247.2		
	SEL	221.0		
Broadside	Peak	253.5	0.52 to 5.16 km	54
	SPL	239.7		
	SEL	222.9		

3.6.1.1 Variation of received sound with depth

In experiments where multiple hydrophones have been deployed to measure the far-field nature of the sound (Greene and Richardson 1988), the hydrophones close to the surface (3m) show 7 dB lower levels than those at greater depths (9m and 18m).

3.6.1.2 Variation received sound with range

Increasing range generally leads to a decreasing sound pressure level. The attenuation rate of the sound pressure level generally follows a cylindrical or spherical spreading law depending primarily on the water depth. The measured results often fall between the two spreading functions and some measurements show spreading at greater levels than spherical spreading sometimes termed hyperspherical spreading. Section 6 gives more information on spreading and absorption coefficients.

Pulse duration tends to increase with range and the pulse shape is modified to give a downward frequency sweep characteristic of pulsed sound propagation in shallow water, (Greene and Richardson 1988).

As the nature of the pulse changes in duration and magnitude with distance from the source so the relationship between SPL and SEL changes with distance from the source as shown in the table 3.6.2.

SPL-SEL	Range
Approx 10dB	300m
Approx 8.5 dB	300m to 3km
Difference is negative as pulse	10 to 16 km
has been stretched by	
propagation characteristics to	
1 sec or larger	

Table 3.6.2 Relationship between SPL and SEL with distance.

3.6.1.3 Directionality

It should be noted that the design aim of the air gun array is to produce as much energy as possible focused in a vertical beam into the seabed. However most measurements are necessarily taken at some distance more or less in the horizontal plane, thus measuring not the main beam of the array but the side lobes and the reflections of the main beam from the seabed and sea surface which may be larger than the direct arrival in the horizontal axis.

There is conflicting evidence of directionality of air gun arrays. Received levels from a three sub array of 3147 cu inch showed little aspect dependence whereas a single string of 1049 cu inch (one of the three sub-arrays) showed stronger aspect dependence with the broadside having the highest peak values and the stern the lowest peak values, (Patterson, S.B. Blackwell et al. 2007). Modelling of a 3959 cu inch array showed an 8.5 dB variation from broadside to end-fire aspects, the frequency range of the model was not stated, (LePage, Malme et al. 1995). The modelled variation was measured and validated by LePage on a similar air gun array, (LePage, Malme et al. 1996). The same type and level of variation is reported by Nedwell, (Nedwell and Edwards 2004).

It is most likely that the directionality of the airgun array depends upon the layout of the air guns, their firing times and the frequency band of measurement and this will vary from survey to survey.

3.6.2 Water gun sources

Water guns operate in a similar way to airguns however high pressure water is vented into the surroundings when the gun is triggered and there is consequently no air bubble oscillation. The spectrum of the water gun pulse is considerably wider than the air gun being reduced only 10 dB at 200Hz, (Gausland 1998).

The variation of signal with depth and the array directional properties are those as the air gun arrays discussed above.

3.6.3 Sparker sources

The sparker is a relatively high powered sound source (typically 215 dB source level). It is dependent on an electrical arc that momentarily vaporizes water between positive and negative electrodes. The collapsing bubbles produce a broad band (50 Hz - 4 kHz) omni-directional pulse which can penetrate several hundred meters into the subsurface. It can operate only in salt water in order to meet the conductivity requirements of the system.

3.6.4 Boomer sources

The boomer is a broad-band sound source operating in the 300 Hz - 3 kHz range. By sending electrical energy from the power supply through the wire coils, spring loaded plates in the boomer transducer are electrically charged causing the plates to repel, thus generating an acoustic pulse. This system is commonly mounted on a sled and towed behind the boat.

Dependant on subsurface material types, resolution of the boomer system ranges from 0.5 to 1 m, penetration from 25 to 50 m. The reflected signal is received by a towed hydrophone streamer.

Source Type	Volume	Pressure	Water	Measurement	Measurement	Extrapolation	Characteristic	Reference
	Cu inch	PSI	Depth		Bandwidth	dB re 1 µPa m		
			m		kHz	peak to peak 41		
Water Gun				238 dB re 1 µPa m	0 to 2	238	Pulsed	(Bouyoucos
(Hydroshock)				Peak to peak ⁴²				1981)
single								
Sleeve exploder			15 to 30	153 dB rms re	0.02 to 1	214	Pulsed	(Greene and
array				1 μPa			6 second interval	Richardson
12 guns				@ 8km			Duration 250ms at 8km	1988)
Propane oxygen mix							Duration 400ms at 29 km	
Open bottomed gas			9 to 11	177 dB rms re	0.02 to 1	225	Pulsed	(Greene and
guns				1 μPa			Interval unknown	Richardson
				@ 0.9km			Duration 200ms at 0.9 km	1988)
							Most energy at 72Hz	
Sparker				92 dB re 1 µPa		92^{43}	Pulsed++	(Nedwell
Single				@ 1m peak				1994)
8kV 1mm gap								
Squid Minisparker ⁴⁴				209dB rms	0.15 to 1.7	218	Repetition rate 4 to 6 sec	(USGS 2000)
							Pulse duration 0.8 mSec	
Squid 500				215 dB rms ⁴⁵		224	(typical)	
Huntec Boomer ⁴⁶				205 dB rms	0.5 to 8	214	Repetition rate 0.5 to 1 sec	(USGS 2000)
							Pulse duration 0.34mSec	
							(typical)	
Air gun	40	2000	15	129 dB rms re	0.020 to 20	186 ⁴⁷	Pulsed	(Greene and
single				1 µPa			Interval unknown	Richardson
				@ 5km				1988)
Air gun	40	1500	Shallow	191 dB rms re		200	Pulsed	(Nedwell and
Single				1 µPa				Edwards
Bolt 1900B				@ 1m				2004)
		2000	Shallow	193 dB rms re		202		
				1 uPa				
				@ 1m				
Air gun array	4 * 70 cu		48	242.7 dB re 1 uPa	0.005 to 20	249	Pulsed	(Patterson
4 guns	inch guns			@ 1m peak			Interval unknown	2007)
U	280 cu			- r ···				,
	inch total							
Air gun array	330		34	167 dB rms re	0.020 to 20	226	Pulsed	(Greene 1988)
3 guns				1 μPa			Interval unknown	

- 48 -

-

Source Type	Volume	Pressure	Water	Measurement	Measurement	Extrapolation	Characteristic	Reference
	Cu inch	PSI	Depth		Bandwidth	dB re 1 µPa m		
			m		kHz	peak to peak ⁴¹		
				@ 3km				
Air gun array	1049	2000	42	Bow 260.4 dB re	0.005 to 20	266	Pulsed	(Patterson
8 Guns, Single Line				1 μPa peak			Interval unknown	2007)
				Stern 245.7 dB re		252		
				1 μPa peak		252		
				Broadside 247.2 dB		253		
				re 1 µPa peak				
Air our orrow	1404		120	110 dP rms ro	0.020 to 20	10648	Dulaad	(Creana 1099)
All guil allay	1404		150		0.020 to 20	190	ruiseu Interval unknown	(Oreene 1988)
				$1 \mu r a$ @52km			intervar unknown	
Air Gun array	1709		20	179 dB rms re	0.020 to 20	233	Pulsed	(Greene 1988)
	1105			1 uPa	0.020 10 20	200	Interval unknown	(0100110 1) 00)
				@ 1.9km				
Air gun array	2869		20	160 dB rms re	0.020 to 20	222^{49}	Pulsed	(Greene 1988)
12 air guns				1 µPa			Interval unknown	
50				@ 12km				
Air Gun Array ⁵⁰	3147	2000	42	Bow 266.4 dB peak	0.005 to 20	272	Pulsed	(Patterson
24 Airguns				re 1 µPa at 1m			10 Second intervals	2007)
				Ct		256		
				Stern 249.8 dB		230		
				peak re 1 µPa at 1m				
				Broadside 253.5 dB		259		
				peak re 1 µPa at 1m				
Airgun array	3955		100	Source level of		271	Pulsed	(Nedwell
18 air guns				262.9 dB rms re				2004)
				1 µPa				
50				@ 1m ⁵¹				
Airgun Array ⁵²	3959		53 to 201	193.6 dB peak re	High pass at	244	pulsed	(LePage 1995)
18 air guns				1 µPa at 180m	5Hz	(239 to 246)		

Review of Existing Data on Underwater Sounds Produced by the Oil and Gas Industry

The measured results for the air gun arrays are plotted on the figure 3.14. Together with the two equations from section 3.6 used to calculate the sound pressure level can be seen that eqn 3.8 (Hildebrand 2006) is a close fit, whereas eqn 3.9 (Nedwell, Needham et al. 1999) consistently overestimates the SPL.

Figure 3.14 Comparison of measured and calculated air gun SPL.

3.7 Shipping and Small Vessel Noise

3.7.1 General

Every vessel has its own unique noise characteristic depending upon propulsion unit, machinery, hull size and shape. These characteristics will change with vessel speed and weather conditions and loading, thus generalisations are required to represent typical vessels as well as reporting measurements of individual vessels.

Shipping noise is generally within the 50 to 300Hz band and is a major contributor to noise near shipping lanes and generally in deep water, it is the dominant noise source between 20 Hz and 500 Hz (Urick, R. J. (1967). Principles of underwater sound, Peninsula Publishing). Average deep water, ambient spectra is shown in appendix 2 section 6. Hull vibrations induce low frequency noise (below 15Hz) for large vessels (see section 3.7.3)

There is evidence to show that low frequency noise has increased at a rate of approximately 3dB per decade in the period from 1950 to 1998 (McDonald, Hilderbrand et al. 2006). This noise is thought to be primarily due to the increase in propeller driven vessels. A simple relationship can be shown between the increase in gross domestic product and the increase in low frequency ocean noise (Frisk). A significant proportion of this noise is due to the activities of the oil and gas industries, which account for nearly 50% of the gross tonnage but only 19% of the total number of vessels in the world's commercial fleet (McDonald, Hilderbrand et al. 2006). In the St Lawrence Seaway about 6000 merchant ships per annum transport cargo along the 300 km long route between the great lakes and the Atlantic. This amount of sea going traffic produces significant continuous noise and causes masking of Blue and Fin whale calls. (Simard, Roy et al. 2006)

A relationship between the increase in total gross tonnage of shipping and the increase in low frequency noise in the ocean has been proposed, (NRC 2003).

Change in shipping noise $(dB) = 20 \log$ (final gross tonnage/initial gross tonnage)

Whilst this equation may be a simplification and is untested, it fits historical data well. Figure 3.11 shows the increasing tonnage of oil carried by tankers over the last 30 years.

Figure 3.15 Movement of oil by tankers. Source UNCTAD calculation

Shipping produces narrowband and broadband underwater sound typically due to engine, machinery and propeller related noise. All vessels which use propellers for propulsion have the potential to produce cavitation noise which is at higher frequencies and is broadband in nature (Kipple and Gabriele 2003). It is estimated that 85% of vessel noise results from propeller cavitations, this sound represents wasted energy in moving ships through water (Barlow and Gentry 2004).

The horsepower required to power a ship increases with the ship's size and is proportional to the cube of the ships speed (Cybulski 1977). Increasing size, power and speed produces increasing radiated broadband and tonal noise primarily radiated by cavitations of the propeller.

3.7.2 Water depth

Shallow water acts as a high pass filter with the cut off frequency increasing with decreasing depth. In very shallow waters distant shipping makes little or no contribution to ambient noise (Harland and Richards 2005).

The domination of ship noise in the frequency band 20 to 500 Hz in the deep ocean may be attributable to traffic at distances of 1000 miles or more. (Cybulski 1977), (Urick 1967).

3.7.3 Noise Characteristics

The classical model proposed by Ross (Ross 1976) states that the ship noise is proportional to a base line spectrum with a constant of proportionality raised to a power proportional to the length and speed of the vessel. Other models give a closer match between modelled and actual ship noise (Wales and Heitmeyer 2001). An approximation of the high frequency emissions of a vessel can be taken as "red" noise (or $1/f^2$ noise) and the low frequency noise assumed to be "white noise" as an average of smoothing the ships tonal noise (Hazelwood 2005). The transition point between the two characteristics varies typically between 100 and 1000 Hz but may be

lower for large vessels such as super tankers. Noise tends to rise at the lower frequencies (below 15 Hz for large vessels possibly due to radiation by hull vibrations (Wright 1983).

Measurements of the noise associated with three super tankers was carried out in 1977 (Cybulski 1977). The water depth for the measurements was in excess 4000m with a surface duct between 20 and 34m. Tones emitted by the propeller were calculated based on

(RPM * B / 60) * n Hz

where B is the number of Propeller blades n is the harmonic number.

Table 3.7.1 Fundamental shaft and propeller tones

Dead	Length	Beam	Draft	Speed	Horsepower	Propeller	rpm	Fundamental	Fundamental	SPL
weight	m	М	m	Knots		blades		Blade rate	Shaft tones	Cavitations
Tons										induced
										Narrow band
										radiation
271034	337.4	53.6	21	16	38000	5	87	7.25 Hz	1.44 Hz	181.4
312212	351.4	55.5	22.3	15.1	30000	4	80	5.3 Hz	1.33 Hz	179.4
102960	265.8	39	19.6	15.5	22550	4	113	7.5 Hz	1.89 Hz	181.5

The measurements show a good correlation between measured tonal lines and calculated tonal lines. Up to 42 out of 55 lines for the shaft rotation could be matched between theory and actual measurements.

(Cybulski 1977) reports that directionality, 7dB higher from bow to stern measurements, was measured during the transit of one of the vessels the origin of the directionality could not be determined although wake or seabed reflections were suggested.

Models are available for predicting vessel noise, these are discussed in detail in Ocean Noise and Marine Mammals (NRC 2003). The graph below shows modeled spectral densities from the RANDI (Research Ambient Noise Directionality) noise model. The ships are based on mean values of ship length and ship speed for each class of vessel.

Figure 3.16 Modelled spectral densities of a range of tanker sizes

3.7.4 Thruster acoustic characteristics

Cavitations of the impellor are the major noise source for vessels using dynamic positioning systems, unless they excite a ship resonant response. Blade passage rate (rpm * number of blades) and cavitation induced noise depend to a large extent on the hydrodynamic and hyrdo-acoustic design of the impeller. (Fischer 2000)

Measurements of thruster noise for an offshore supply vessel are given in the table 3.6.2 below and shown graphically in figure 3.13.

Engine	Propeller	Thrusters	Thruster	Broadband	Extrapolated
	Power		Propeller Power	Source Level	value
On	100%	Off	0%	187.76	197
On	75%	Off	0%	183.89	193
On	50%	Off	0%	182.27	191
On	25%	Off	0%	178.98	188
On	0%	Off	0%	173.31	182
On	0%	On	0%	173.94	183
On	0%	On	100%	181.75	191
1					

 Table 3.7.2 Measurements of thruster noise for an offshore supply vessel Source (Austin 2005)

Figure 3.17 Thruster noise. Adapted from (Austin 2005)

The table shows that the maximum thruster noise is below the main propulsion noise at full power. The graph shows that the thruster noise has an approximate linear relationship with the power level supplied.

Where cavitation is the main source of noise it may be reduced by improved propeller design. The onset of cavitation is clearly shown in figure 3.14 below which shows a thruster before and after modification to reduce underwater radiated noise. Thruster cavitation was reduced until onset was at around 250 RPM. Note that the measurements units are not distance calibrated. (Brown, Dai et al. 2001)

Figure 3.18 Thruster Noise showing onset of cavitation at around 250 RPM (Brown, Dai et al. 2001)

3.7.5 Effect of vessel speed

A report from Glacier Bay shows that sound level and sound peaks generally increased by between 4 and 6dB when increasing speed from 10 to 20 knots, although in one case the noise levels dropped due to low frequency propulsion system noise components (Kipple 2002). A small increase in speed from 4.9 knots to 5.8 knots of a laden self propelled barge showed a 5 dB increase in SPL (Zykov and Hannay 2006).

Hydrodynamic flow over the ship's hull and appendages is an important broadband noise generating mechanism especially with increased speed (Hildebrand).

As ship increases speed broadband noise such as propeller cavitation and hull vibration noise become dominant over machinery noise (NRC 2003).

3.7.6 Vessel size

Large vessel noise is generally higher at low frequencies, small high powered (greater than 100 HP) propeller driven craft often exceed large vessel noise at frequencies above 1 kHz and at 2.5 kHz may be 13 dB above large ship noise (Kipple 2002).

Small vessels do not contribute to the global ocean acoustic environment but may be important localised sound sources. Smaller vessels can produce significant sound levels relative to their size as their speeds are typically higher than large vessels and they produce higher frequency (Zykov and Hannay 2006) noise which propagates better in shallow water than the low frequencies typical of larger craft

The passage of small vessels through swells in rougher sea states can lead to cyclic changes in sound level by up to 8 dB above and below the average sound level. This effect will increase the

local maximum levels but may be mitigated over longer ranges by increased scattering from the sea surface. (Zykov and Hannay 2006)

3.7.7 Hovercraft

Underwater hovercraft noise is dominated by the blade rate of the thrust propeller rather than, as may be expected, the lift fan. (Richardson 2006). The sound level is higher near the surface (1m) than at a deeper point (7m). This is probably due to the fact that all the sources of noise are in the air and then coupled into the water via the air/water interface.

3.7.8 Note on tables

Due to the scarcity of measurement information about the vessels used by the oil and gas industries a range of vessels outside the industry have been included in the tables. The tables have been structured with the largest vessels by gross tonnage first, down to the small vessels by length last.

Table 3.7.3 Shipping and small vessel noise

Vessel Type	Displacement	Length	Propulsion	Activity	Measurement	Measurement	Extrapolation	Reference
	Tonne	m				band kHz	dB re 1 μPa m peak to peak	
Cruise Ship	78200 (77000 tons)	260	Diesel Electric	Underway 9.9 knots Underway 5.6 knots	177 dB rms re 1 μPa at 1yd	0.01 to 40	185 185	(Kipple 2002)
Cruise Ship	77000 (78200 tons)	260	Diesel Electric	Underway 10.8 knots Underway 14.2 knots	175 dB rms re 1 μPa at 1yd 183 dB rms re 1 μPa at 1yd	0.01 to 40	183 191	(Kipple 2002)
Cruise Ship	55900 (55000 tons)	219	Diesel Electric	Underway 10.8 knots Underway 18.0 knots	183 dB rms re 1 μPa at 1yd 183 dB rms re 1 μPa at 1yd	0.01 to 40	189 191	(Kipple 2002)
Cruise Ship	50800 (50000 tons)	230	Direct Diesel	Underway 10.0 knots Underway 19.2 knots	176 dB rms re 1 µPa at 1yd 195 dB rms re 1 µPa at 1yd	0.01 to 40	184 203	(Kipple 2002)
Cruise Ship	49800 (49000 tons)	241	Diesel Electric	Underway 10.5 knots Underway 15.3 knots	185 dB rms re 1 μPa at 1yd 184 dB rms re 1 μPa at 1yd	0.01 to 40	193 192	(Kipple 2002)
Cruise Ship	23400 (23000 tons)	188	Steam Turbine	Underway 10.0 knots Underway 15.5 knots	178 dB rms re 1 μPa at 1yd 178 dB rms re 1 μPa at 1yd	0.01 to 40	186 186	(Kipple 2002)
Cargo bulk	25515	173	Low speed diesel direct drive	Underway at 16 knots 140 rpm	192 dB rms re 1 μPa @ 1 m		201	(Arveson and Vendittis 2000)
Cargo bulk				Held in dock using two tugs	188.8 dB rms re 1 μPa @ 1 m	0.01 to 20	198	(Blackwell and C.R.Greene 2002)
Cargo freight				In dock loading and unloading	133.5 dB rms re 1 μPa @ 1 m	0.01 to 20	142	(Blackwell and C.R.Greene 2002)
Container Vessel				Loaded	181 dB rms re 1 μPa @ 1 m	0.01 to 10	190 100 to 5400 Hz	(Galli, Hurlbutt et al. 2003)
Large gravel carrier	19853 (gross tonnage)	219	9464 BHP	Underway	117.6 dB rms re 1 μPa @ 134m 156.66 dB rms re 1 μPa @ 1m	0.02 to 20	166	(Carr, Laurinolli et al. 2006)
Tanker				50% Loaded	180 dB rms re 1 μPa @ 1 m	0.01 to 10	189 100 to 6700 Hz	(Galli, Hurlbutt et al. 2003)
Ice Breaker	6264 (6166 tons)	100	Diesel Electric	Bubbler Noise	201 dB re 1 μPa @ 1 m Source level (95 th percentile)	0.1 to 20	210 Continuous White noise most energy below 5kHz	(Erbe and Farmer 2000)
Ice Breaker	6264 (6166 tons)	100	Diesel Electric	Propeller cavitation noise during ramming of ice	205 dB re 1 μPa @ 1 m Source level (95 th percentile)	0.1 to 20	214 Sharp pulses at 11 Hz	(Erbe and Farmer 2000)
Rig tender	2600	64	4 engines each 2000 HP	Underway at 11 knots	136 dB rms re 1 μPa @ 400 m		182	(McCauley 1998)

- 59 -

-

Vessel Type	Displacement	Length	Propulsion	Activity	Measurement	Measurement	Extrapolation	Reference
	Tonne	m				band kHz	dB re 1 μPa m peak to peak	
Seismic Survey Vessel	3779 (gross tonnage)	84.9 (279 ft)	5 Diesel electric engines A total of 10123 BHP	Seismic Survey	125 to 132 dB rms re 1 μPa @ 500m	0.01 to 20	Aspect dependent	(Patterson, S.B. Blackwell et al. 2007)
Tug/ supply/fire fighting vessel	1894 gross tonnage	67 (218 ft)	4 main engines with total output 10600 kW 2* 600Hp thruster 1*800 HP thruster	Offshore support vessel	187.76 dB rms re 1 μPa @1m ⁵³	0.001 to 10	197	(Austin, MacGillivray et al. 2005)
Icebreaking Tug and supply vessel	1190 (gross tonnage)	62.5 (205 ft)	2 G.M. 20-645-E7 turbocharged diesel engines Total of 7200 BHP	Seismic survey support	127 to 135 dB rms re 1 μPa @ 500m	0.01 to 20	Aspect dependent	(Patterson, S.B. Blackwell et al. 2007)
Tug	783 (gross tonnage)	47 (153 ft)	4 caterpillar V6 D399 diesel engines Total of 4500 BHP	Seismic survey support	122 dB rms re 1 μPa @ 500m 160.8 dB rms re 1 μPa @ 1 m ⁵⁴	0.01 to 20	170	(Patterson, S.B. Blackwell et al. 2007)
Tug with Barge ⁵⁵	Tug Gross tonnage 104	19.5 (64 ft)	Main engine 1095 hp diesel	Unloaded Speed 7.4 knots	173 dB re 1 μPa @ 1 m Source level	0.01 to 20	182 Broadband 10 to 2500 Hz with broad peak between60 and 600Hz	(Zykov and Hannay 2006)
		Draft 1	propeller 5 blades	Unloaded Speed 8.7 knots	182 dB re 1 μPa @ 1 m Source level ⁵⁶		191 Lower LF content, broadband 50 to 5000 Hz	
		(3.5 1001)		Partial load Speed 6.4 knots	177 dB re 1 μPa @ 1 m Source level		186 Lower LF content, broadband 50 to 5000 Hz	
Tug				Pushing gravel barge	163.8 dB rms re 1 μPa @ 1 m	0.01 to 20	173 Most of energy in 100 to 2000Hz band with tones at multiple of blade rates	(Blackwell and C.R.Greene 2002)
Tug				Docking gravel barge	178.9 dB rms re 1 μPa @ 1 m	0.01 to 20	188	(Blackwell and C.R.Greene 2002)
Offshore fishing		20	Single V12 450 Hp	Underway at 12.5 knots	139 dB rms re 1 μPa @ 30 m		174	(McCauley 1998)
Self Propelled barge		42.7 (140 ft) Beam 12	Two 220 hp diesel engines Two 1.016m	Unloaded at 2.8m/sec Partial loading	173 dB rms re 1 μPa @ 1 m	0.01 to 20	181	(Zykov and Hannay 2006)
L		(40ft)	propellers	At 2.8m/sec	- 60 -		Broadband noise between 10 and	

Vessel Type	Displacement	Length	Propulsion	Activity	Measurement	Measurement	Extrapolation	Reference
	Tonne	m				band kHz	dB re 1 µPa m peak to peak	
					@ 1 m		5000 Hz	
Self Propelled barge		42.7 (140 ft) Beam 12	Two 220 hp diesel engines	Unloaded at 2.8m/sec Full loading	163 dB rms re 1 μPa @ 1 m	0.01 to 20	172	(Zykov and Hannay 2006)
		(40ft)	Two 1.016m propellers	At 2.5m/sec	168 dB rms re 1 μPa @ 1 m		177	
				At 3m/sec	174 dB rms re 1 μPa @ 1 m		183	
Cabin cruiser		9.1 to 10.3 (30 and 34 ft)	Diesel Jet drive 420 & 2*310 HP	Underway 10 knots Underway 20 knots	160 dB rms re 1 μPa at 1yd 167 dB rms re 1 μPa at 1yd	0.01 to 40	169 176	(Kipple 2003)
Crew boat		8.5 (28 feet)	Two 285 inboard engines and two 773 Hamilton jet pumps	Underway 13 knots	166 dB rms re 1 μPa @ 1 m	0.01 to 20	175	(Zykov and Hannay 2006)
Cabin Cruiser workboats		6.7 to 19.7 (22 to 65 ft)	350 to 375 HP various	Underway 10 knots Underway 20 knots	165 dB rms re 1 μPa at 1yd 182 dB rms re 1 μPa at 1yd	0.01 to 40	174 191	(Kipple 2003)
Boston Whaler		6.4 (21 feet)	250 Hp Johnson 2 cycle outboard	Full speed	147.2 dB rms re 1 μPa @ 1 m	0.01 to 20	156	(Blackwell and C.R.Greene 2002)
Skiff		5.77 (19 ft)	4 stroke outboard 115HP	Underway 10 knots Underway 20 knots	172 dB rms re 1 μPa at 1yd 174 dB rms re 1 μPa at 1yd	0.01 to 40	181 183	(Kipple 2003)
Skiff		4.9 (16 feet)	50 Hp 4 stroke outboard.	Underway 13 knots	166 dB rms re 1 μPa @ 1 m	0.01 to 20	175	(Zykov and Hannay 2006)
Skiff		4.25 to 5.5 (14 to 18 ft)	2 or 4 stroke outboard 25 to 40 HP	Underway low speed Underway 20 knots	157 dB rms re 1 μPa at 1yd 169 dB rms re 1 μPa at 1yd	0.01 to 40	166 178	(Kipple 2003)
Flat bottom workboat			90 Hp Outboard	Idle Full Speed	141 dB rms re 1 μPa @ 1 m 163 dB rms re 1 μPa @ 1 m	0.01 to 10	150 500 to 1700 Hz 172 100 to 3000Hz	(Galli, Hurlbutt et al. 2003)
Small work boat			Twin Caterpillar inboard, 210 HP	Idle Full Speed	148 dB rms re 1 μPa @ 1 m 162 dB rms re 1 μPa @ 1 m	0.01 to 10	157 200 to 1800 Hz 171 200 to 4600Hz	(Galli, Hurlbutt et al. 2003)

-

Vessel Type	Displacement Tonne	Length m	Propulsion	Activity	Measurement	Measurement band kHz	Extrapolation dB re 1 μPa m peak to peak	Reference
Avon rubber boat		5.4 (18 feet)	80 Hp 4 cycle engine	Full Speed 57.6 k/hr 31 knots	155.9 dB rms re 1 μPa @ 1 m	0.01 to 20	165	(Blackwell and C.R.Greene 2002)

Table 3.7.4 Hovercraft

Vessel Type	Displacement	Length	Propulsion	Activity	Measurement	Measurement	Extrapolation	Reference
	Tonne	m				band	dB re 1 μPa m	
						kHz	peak to peak	
Hovercraft	Griffon	11.9	12 blade lift fan			0.01 to 10	158	(Richardson 2006)
	2000D		Blade rate	Underway 20knots	133 dB rms at 6.5m			(Blackwell and
	2268 kg		420Hz		(1m depth)			Greene 2005)
	payload		Thrust propeller		131 dB rms at 7m			
			blade rate 92Hz		depth			
Hovercraft	AP.1-88		1800 or 2100	Underway over Ice	141 dB rms at 16m			(Roof and Fleming
			RPM	covered river	(1.5 to 0.5m			2001)
					hydrophone depth			
					below ice layer)			

Table 3.7.5 Snowmobile

Туре	Activity	Measurement	Measurement band	Extrapolation dB re 1 μPa m peak to peak	Reference
Snowmobile	In progress over Ice covered river	140 dB rms at 3m (1.5 to 0.5mhydrophone depth below ice layer)			(Roof and Fleming 2001)

Anchor handling for pipe lay spread - DH	As alternative to conventional anchor handlers. Vessels	
Delta	are more weather sensitive. <i>Figure 3.24</i>	REPRESENTATIVE VESSEL NOT MEASURED – 1/3-OCTAVE SOURCE LEVEL PLOT NOT AVAILABLE NOISE PRODUCED BY THIS TYPE OF VESSEL WOULD LIKELY BE SIMILAR TO THAT SHOWN FOR THE DN43 (SEE ABOVE HISTOGRAM).
Diving Support Vessel – Bar Protector	Diving support vessel used to perform the tie-in and commissioning of the pipelines. Vessel is usually kept on station with dynamic positioning, however it can be moored using anchors <i>Figure 3.25 (Hannay, MacGillivray et al. 2004)</i> ⁵⁹	REPRESENTATIVE VESSEL NOT MEASURED – 1/3-OCTAVE SOURCE LEVEL PLOT NOT AVAILABLE NOTE: PRIMARY NOISE PRODUCED BY SUCH A VESSEL WOULD LIKELY BE ATTRIBUTED TO THE ONBOARD POWER PLANTS AND WINCH SYSTEM, NOT TO THE PROPULSION SYSTEM AS THE VESSEL WOULD BE ANCHORED AND NOT TRANSITING OR EMPLOYING THRUSTERS.

3.8 Sites

Noise from production platforms or construction sites is very variable and generally depends upon vessels operating around the site (Richardson 2006) (Swift and Thompson 2000) where crew boats, self propelled barges and tugs are the main contributors to the sound field. The vessel noise may be detected at ranges up to 30km from the site. Without vessels the broadband noise of the Northstar site reached background levels at a range between 1 and 4 km with vessel activity the background level was reached at a range of between 30 and 40 km (Blackwell and Greene 2005).

Narrow band noise events have been associated with gas turbine use on FPSO (Floating Production Storage and Offloading vessel) and valve and compressor problems again on an FPSO (Swift and Thompson 2000).

The noise from Douglass oil and gas facility was found to vary significantly from time to time. The deeper hydrophones showed higher levels of sound (Nedwell 2003).

The most significant amount of literature is available on the gravel island production site "Northstar" in the Beaufort sea. (Richardson 2006), (Spence 2006), (Blackwell, Greene et al. 2004) and (Blackwell and Greene 2005).

During the construction phase of the ice road, gravel trucks trenching and other operations produced broad band noise levels (10 - 10000 Hz) in the order of 124 dB at 100m. (Greene, Blackwell et al. 2007). It was found difficult to isolate individual pieces of machinery as, in general, multiple activities were in progress during measurements.

During production the prime noise path is a direct sound path through the gravel of the Island, a second path was found to be direct radiation from systems connected directly to the sea. The sounds produced by "Northstar" were found to comprise a variety of tones which were intermittent in nature, probably associated with the use of large machinery on the island. Two tones 30Hz and 60Hz were found to be continuous.

Measurements of the Phillips oil platform also revealed a number of tones mainly below 500Hz the most prominent being around 80Hz (Blackwell and C.R.Greene 2002).

The noise investigations of the "Northstar" were inconclusive as to the generation of noise by the buried pipeline. (Spence 2006), however (Richardson 2006) suggests that the source of unknown noise incurred whilst measuring the Northstar production island, may be due to turbulent flow within the oil well.

Decommissioning

The removal of structures from the seabed may be carried out by cutting, using disc cutters or by explosives. Little documentation on either of these processes is available, however a recent report describes detailed modelling techniques for calculation of impact zones during explosive removal of offshore structures, (Dzwilewski and Fenton 2003).

Туре	Activity	Water Depth	Measurement	Extrapolation	Characteristics	Comments	Reference
		m		dB re 1 µPa m			
				peak to peak			
Douglass oil and gas		9		195.6 at depth	Strong	Rig support	(Nedwell 2003)
platform				of 5m	Tonal	vessel in	
				225.7 at depth	components	attendance.	
				of 10m	from machinery		
Northstar oil	Construction &		Max 141 dB rms	177	Constant tones	Vessels in	(Richardson
production island	production				at 30, 60 &	attendance	2006)
			Min 81 dB rms	117	87Hz		
			@ 550m				
The Phillips oil		25m	107 dB rms @0.34	130^{60}	Tones below		(Blackwell and
Platform in Cook Inlet			km		500Hz		C.R.Greene
					Prominent tone		2002)
					at 80Hz		
General Digger	Removing concrete &	Shallow	113 dB rms	122 average		Activity during	(Nedwell,
operations	welding noise		@ 1m average	peak		hydraulic piling	Macneish et al.
							2005)
			119 dB rms	128 dB			
			@ 1m peak				
Gravel trucks on ice	23m^3	Shallow	123dB rms at 100m		Broadband	Construction of	(Greene,
road		water/ice			10 to 10000Hz	ice road	Blackwell et al.
					Centre of		2007)
					strongest 1/3		
					OB 160 Hz		
Ditch witch	Ice cutting equipment	Shallow	122dB rms at 100m		Broadband	Construction of	(Greene,
		water/ice			10 to 10000Hz	ice road	Blackwell et al.
					Centre of		2007)
					strongest 1/3		
		CI 11	105 10		OB 20 Hz		(6
Trenching with		Shallow	125 dB rms at		Broadband	Construction of	(Greene,
backhoe		water/ice	100m		10 to 10000Hz	ice road	Blackwell et al.
					Centre of		2007)
					strongest 1/3		
		01 11	114 ID (OB 10 HZ		(0
Dozer		Snallow	114 dB rms at		Broadband	Construction of	(Greene,
		water/1ce	100m		TO TO TOUOUHZ	ice road	Blackwell et al.
					Centre of $1/2$		2007)
					Strongest 1/3		
					OB 10 HZ	1	

3.9 Sonars and acoustic devices

Passive sonar is the use of hydrophones (underwater microphones) to listen for noise in the ocean and has no impact other than the towing vessel noise, on the environment.

Active sonar is the use of underwater sound for locating and surveying within the ocean and is used extensively by the oil and gas industries as well as all other vessels using the oceans.

Other acoustic transmitting devices are used to activate release mechanisms, discourage seals and other marine life from approaching fish farms, fish nets or other potentially hazardous areas.

Sonar can be grouped into three categories (Tasker 2005; Tasker, Clark et al. 2005);

Low Frequency, sounds produced below 1000 Hz

Mid Band, sounds in the band 1 to 10 kHz

High frequency, sounds in the band 10 kHz upwards

Low frequency sonar is used by the military for long range detection of quiet submarines using a large Low Frequency Array (LFA), (SURTASS-LFA) and by oceanographers for Acoustic Thermometry of Ocean Climate (ATOC) (section 4.1). The oil industry's seismic survey process uses low frequency impulses for geological profiling, this is detailed in section 3.5.

Mid band sonar is typically used for finding and tracking of underwater targets. Bathymetric sonar uses mid band frequencies for wide area low resolution surveys.

High Frequency sonar is used for depth sounders and fish finding, they generally use low power and narrow beam widths. Most vessels used by the oil and gas industry will be fitted with some form of high frequency sonar to measure water depth.

A typical survey of the seabed and sub-surface geology before placement of a drilling rig or pipe line might include high resolution seismic survey, side scan sonar and multibeam bathymetry.

Unlike seismic pulses the duration of sonar chirps are not observed to increase with range (Patterson, S.B. Blackwell et al. 2007).

Table 3.9.1 Sonars and acoustic devices

Sound Source	Typical	Duration	Source Levels	Extrapolation	Bandwidth	Beam angle	Reference
	frequency	mSec	dB re 1 µPa m	dB re 1 µPa m peak to peak		Beam width degrees ⁶¹	
Bottom Profilers	0.4 to 30 kHz	0.1 to 160	200 to 230	209 to 239		150	(Heathershaw, Ward et al. 2001)
Sub surface imaging	1 to 12 kHz Typically 3.5 kHz	Sweep or chirp	204	213			(O'Brien, Arnt et al. 2002) (Gordon, Gillespie et al. 2002) (Tasker, Clark et al. 2005)
Chirp Sonar Datasonics chrip11	2 to 7 or 8 to 23 kHz	Pulse interval 0.25 to 5 sec	189.2 peak 184 SPL 171 SEL	195			(Patterson, S.B. Blackwell et al. 2007)
Underwater telephone	5to 11 kHz	Continuous	180 to 200	189 to 209			(Heathershaw, Ward et al. 2001)
GLORIA	6 to 7 kHz						(Tasker, Clark et al. 2005)
Acoustic releases	7 to 50 kHz	Pulses 1	192 dB 0 to peak	198		omni	(O'Brien, Arnt et al. 2002)
Navigation transponders	7 to 60 kHz	3 to 40	180 to 200	189 to 209			(Heathershaw, Ward et al. 2001)
Fugro Sea Floor Survey Type SYS09	9 and 10 kHz		230	239			(Tasker, Clark et al. 2005)
Silent Scrammer	9.7 kHz	3.3 to 14mSec	Max Source Level 191	199			(Lepper 2007)
Acoustic Harassment Devices (AHD)	10kHz	Typically 0.5 to 2s Duty Cycle 50%	Typically 185 to 190dB	194	600 Hz	omni	(Roussel 2002) (Liss, Briggs et al. 2005)

Sound Source	Typical	Duration	Source Levels	Extrapolation	Bandwidth	Beam angle	Reference
	frequency	mSec	dB re 1 µPa m	dB re 1 µPa m		Beam width	
				peak to peak		degrees	
Acoustic Deterrent	Typically 12 – 17	Typically	Typically	129 to 149		omni	(Roussel 2002)
Devices (ADD)	kHz	300ms	between 120				
	But maybe up to		and 140dB				
	160kHz						
Depth sounders	12 to 36kHz	pulse	180 to 220	189 to 229		6	(Heathershaw, Ward et al.
		_				Directly below	2001)
						vessel	
Depth sounder	15.5 kHz	pulse	220	229		Directly below	(Tasker, Clark et al. 2005)
Atlas Hydrosweep DS-2						vessel	
Acoustic Doppler	38 to 150 kHz	Continuous					(O'Brien, Arnt et al. 2002)
current profilers							
Sidescan Sonar	50 to 500kHz	0.01 to 0.1	220 to 230	229 to 239			(Heathershaw, Ward et al.
							2001)

Minimal information is available on the use of underwater tools. The only published work available is Nedwell 2004 which gives very brief information.

Table 3.10.1 Underwater Tools

Туре	Activity	Water Depth	Measurement	Extrapolation	Comments	Reference
		m		dB re 1 µPa m		
				peak to peak		
Diver Tools	Drills, wrenches,		Peak source level	206		(Nedwell
	grinders, bolt gun,		200 dB re 1 µPa			2004)
	jack hammer		m			

4 Other Sounds in the Oceans

The following tables are listed for comparative purposes and give examples of the range of sounds the man made, geological and meteorological noise sources and biological noise.

Table 4.1 Man made noise sources

Sound Source	Sound Pressure	Ping Energy	Ping Duration	Duty Cycle	Peak	Band Width	Directionality	Source
	level	dB re 1 µPa ^2s			Frequency			
	dB re 1 µPa m							
Underwater	328		1000s	Intermittent	Low	Broad	Omni	(Liss, Briggs
Nuclear Device								et al. 2005)
Ship Sock Trial	299		100s	Intermittent	Low	Broad	Omni	(Liss, Briggs
								et al. 2005)
Military Sonar	235	233	60 to 100s		100 to 500 Hz			(Liss, Briggs
Surtass / Low								et al. 2005)
Frequency								
Active (LFA)								
Military Sonar	235	232	0.5 to 2.5s	6%	2600 to 3300	Narrow	Horizontal	(Liss, Briggs
(AN/SQS-53C)					Hz			et al. 2005)
Military Sonar	223				2600 to 3300			(Tasker,
(AN /SQS-56)					Hz			Clark et al.
								2005)
Research Sonar	195		20 min	8%	75 Hz	37.5	Omni	(Liss, Briggs
ATOC								et al. 2005)

Table 4.2 Geological and meteorological noise sources

	Maximum Source	Frequency range		Extrapolation	
	Level ⁶³ dB re 1 µPa				
	m				
		Hz		dB re 1 µPa m	
				peak to peak	
Undersea earthquake	272	20 to 1000	Magnitude 4.0 on Richter scale (energy integrated	281	(Heathershaw, Ward et
			over 50Hz bandwidth)		al. 2001)
Seafloor volcanic	255	20 to 1000	Massive steam explosions	264	(Heathershaw, Ward et
eruption					al. 2001)
Lightning strike on sea	250	20 to 1000	Random events during storms	259	(Heathershaw, Ward et
surface					al. 2001)

Table 4.3 Biological Noise

	Maximum Source	Frequency range		Extrapolation	
	Level ^{or} dB re 1 µPa				
	m	11-		1D 1 D	
		HZ		dB re I µPa m	
				peak to peak	
Bottlenose Dolphin	226	40 to 140 kHz	Echolocation Clicks	235	(Harland and Richards 2005)
Fin whale	200	20 to 1000	Vocalisations; pulses, moans	209	(Heathershaw, Ward et al. 2001)
Humpback whale	192	20 to 1000	Fluke and Flipper slaps	201	(Heathershaw, Ward et al. 2001)
Bowhead whale	189	20 to 1000	Vocalisations ; songs	198	(Heathershaw, Ward et al. 2001)
Blue whale	188	20 to 1000	Vocalisations ; low frequency moans	197	(Heathershaw, Ward et al. 2001)
Right whale	187	20 to 1000	Vocalisations ; impulsive signal	196	(Heathershaw, Ward et al. 2001)
Gray whale	185	20 to 1000	Vocalisations ; moans	194	(Heathershaw, Ward et al. 2001)
Harbour Porpoise	170	40 to 140 kHz	Echolocation Clicks	179	(Harland and Richards 2005)
Open ocean ambient noise	74 to 100	20 to 1000	Estimate for offshore central California sea state 3-5.		(Heathershaw 2001)

5 Other Useful Literature

The following documents represent technical information relevant to underwater sound and the oil and gas industries.

5.1 Technical information and specifications

Technical documentation which has been used in the compilation of this report

Special Report of the SEG Technical Standards	SEG standards for specifying marine seismic	(Johnston, Reed et al. 1988)
Committee	energy sources	
Seismic Energy Sources	1968 Handbook	(Kramer, Peterson et al. 1968)
The air gun impulsive underwater transducer	Bolt Beranek and Newman Inc	(Barger and Hamblen 1980)
Impact of seismic surveys on marine life	Leading Edge	(Gausland 2000)
Environmental Aspects of Airguns	Shell EXPRO	(van de Sman 1998)
Impacts of Marine acoustic technology on the	SCAR Ad Hoc group on marine acoustic	(O'Brien, Arnt et al. 2002)
Antarctic environment.	technology and the environment	
The Environmental effects of Underwater	U.S. Army Corps of Engineers	(Keevin and Hempen 1997)
Explosions with Methods to Mitigate Impacts		

5.2 Reports relating to underwater noise and the oil industry

The environmental impacts of shipping: a whales eye view of	IFAW (International Fund for Animal Welfare)	(Leaper and Papastravrou)
snips Sound offerst on the environment interview with Dr Lever	MED (Marine Engineers Deview)	(Laura 2001)
Sound effect on the environment interview with Dr Leung	MER (Marine Engineers Review)	(Leung 2001)
An Overview of Offshore oil and gas exploration and	Department of Trade and Industry (UK)	(DTI 2006)
production activities		
A Review of the effects of seismic survey on marine mammals	Marine Technology Society Journal	(Gordon, Gillespie et al. 2003)
Oceans of Noise	Whale and Dolphin Conservation Society	(Simmonds, Dolman et al.
		2004)
Underwater noise	IFAW & NRDC	(IFAW and NRDC 2004)
Sounding the depths 2	Natural Resources Defence Council	(Jasney, J.Reynolds et al.
		2005)
Marine Seismic Surveys- A study of environmental	Centre for Marine Science and Technology Curtin	(McCauley, Fewtrell et al.
implications	University Perth	2000)
Mitigating, monitoring and assessing the effects of	NOAA Southwest Fisheries Science centre	(Barlow 2006) (Barlow and
anthropogenic sounds on beaked whales		Gisner 2006)
Potential impact of offshore human activities on gray whales	NOAA	(Moore and Clarke 2002)
Shunpiking	Margaree Environmental Association and the Save	(Clark 2002)
	Our Seas Coalition	
Sonic Impact: A Precautionary Assessment of Noise Pollution	Greenpeace	(Cummings and Brandon
from Ocean Seismic Surveys		2004)
Underwater Noise: Death Knell of our Oceans?	Dalhousie University	(Weilgart 2007)
Underwater Sound and Marine Life	Report of IACMST Working Group on Underwater	(Liss, Briggs et al. 2005)
	sound and Marine Life	
The contribution of marine seismic surveys and their potential	An overview of noise sources in the ocean	(Hildebrand 2006)
impacts on marine biota	focussing on shipping and seismic exploration.	
-	Discusses an overall ocean noise budget	
A review of the Impact of Anthropogenic Noise on Cetaceans	An overview including seismic exploration impact	(Perry)
Introduction to air guns and air gun arrays	Review of air guns and environmental issues	(Dragoset 2000)

Impact of Noise on the Marine Environment- a Regulatory	A presentation by the UK DTI and their stategic	{Soderstrom, #121}
Perspective	view of ocean noise.	

5.3 Other literature relating to underwater sound

Sounds, source levels, and associated behaviour	Measurements of frequency band and signal	(Thompson, Cummings et al. 1986)
of humpback whales, Southeast Alaska.	levels of noise made by humpback whales	
Marine Mammals and Noise	Reference work on noise sources and cetaceans	(Richardson 1995)
Assessment of Bioacoustic Impact of Ships on	Paper discusses propagation models,	(Richardson 1995)
Humpback Whales in Glacier Bay, Alaska	audiograms and impact assessment	
Likely Sensitivity of Bottlenose Dolphins to	Paper discusses pile driving noise and	(David 2006)
pile-driving noise	comments on the use of bubble curtains	
Underwater temporary threshold shift in	Effects of underwater noise on pinnipeds and	(Kastak 2005) (Kastak, Southall et al. 2005)
pinnipeds: effects of noise and duration	discussion of metrics for underwater sound	
Policy on Sound and Marine Mammals	Report on an International Workshop	(Vos and Reeves 2005)
Background information on Marine Mammals	Review of noise sources and impact	(Hammond, Northridge et al. 2005)
for Strategic Environmental Assessment 6		
Ocean Noise and Marine Mammals	Review of noise sources and potential impact on	(NRC 2003)
	Marine Mammals	
International Regulation of Undersea Noise	Review of International law relating to	(Scott 2004)
	underwater noise pollution	
Anthropogenic sound and marine mammal	Reports on the nervous system activation and	(Romano, Keogh et al. 2004)
Health: measures of the nervous and immune	immune function in marine mammals when	
systems before and after intense sound	subjected to air gun and sonar signals	
exposure.		
Potential Impact of offshore human activities on	Review of all aspects of offshore activities and	(Moore and Clarke 2002)
gray whales (Eschrichtius robustus)	impact on gray whales	

Appendix A

Definition of Metrics

A more comprehensive set of metrics is being developed by the Joint Industry Programme (JIP)

A.1 Acoustic Impededance

The speed of sound is related to frequency by the equation $C=f\,\lambda$

Where C = speed of sound in m/sec

F = frequency in Hz

and $\boldsymbol{\lambda}$ is the wavelength in metres

The particle velocity $\boldsymbol{\mu}$ relates to the plane wave pressure p by the equation

 $p = \mu (\rho c)$

The term ρc is known as the characteristic impedance. The large impedance contrast between air and water (approximately a ratio of 3600) implies that the sea surface behaves as an almost perfect reflector of internal sound

A.2 Signal Definitions

Quantity		Abbreviation	Definition
Amplitude			The maximum displacement from zero or mean position of a
			wave or oscillation
peak level or		Peak or	Same as amplitude of a signal
zero to peak		0-p	or the maximum value measured from the zero line
peak to peak		$\mathbf{p} - \mathbf{p}$	The maximum displacement between the positive part of the
level			signal and the maximum negative part of the signal
root mean square		rms	The root mean square of a signal (being $1/\sqrt{2}$ of the amplitude of the signal for a sine wave) averaged over the duration of the signal.

To remove doubt, the graph below shows a sinusoidal measurement. The vertical axis represents displacement and the horizontal axis time.

Figure A.1

Note that for a sine wave,

Peak to Peak = 2* Amplitude $rms = Amplitude / \sqrt{2}$ Peak to Peak = $rms * \sqrt{2} * 2$ Peak to Peak (dB) = rms (dB) + 3dB + 6dBPeak to Peak (dB) = rms (dB) + 9dB

This is not necessarily true for other wave forms and impulsive sounds.

To compare peak levels with rms levels (for a sinusoid pressure wave only) multiply the peak level by 0.7071 to obtain the rms level. (Gausland 2000) (Horowitz 1996)

In describing seismic sources (Johnston 1988) "the source strength is the maximum acoustic pressure radiated by a marine seismic source measured in MPa-m (megapascals referenced to 1 m) in a stated pass band. The zero to peak value is used for near-field signatures. A peak to peak value is normally used for far field signatures."

In practice a range of metrics have been used to define the source strength most of which are not readily comparable without significant assumptions.

Peak pressure, the instantaneous maximum of the absolute sound pressure, in dB re 1 μ Pa.

Pulse duration, defined as the time interval between the arrival of 5% and 95% of the total pulse energy measured in seconds.

Sound pressure level (SPL), is calculated by taking the (rms) value of pressure, over a specified period of time to the reference pressure. The SPL of a pulse is thus dependent upon the chosen duration of the pulse (the definition of rms includes an averaging period).

 $SPL = 20\log_{10}(P_{rms} / P_{ref})$

Sound Exposure Level (SEL), represents the total amount of energy measured during a single noise event referenced to one second. SEL is defined as the squared instantaneous sound pressure integrated over the pulse duration in dB re $1\mu Pa^2s$

Note that SEL is not influenced by the duration of a pulse as it is a measure of the total energy of the pulse regardless of its duration.

Equivalent Continuous Sound Level (L_{eq}) is the sound level of a steady state sound that has the same total energy as the time varying sound, over a specific time period.

 $L_{eq}(T) = SEL + 10\log(N/T)$

Where T is the time in seconds and N is the number of events during the time period.

From experience RMS=SEL+10 to 15dB for airgun pulses depending upon amount of reverberation. (Demarchi, Bocking et al. 2006)

A.3 Extrapolation of data points

The extrapolated values are calculated on the basis of spherical spreading to within the water depth and then cylindrical spreading to the receiver position. This is a broad brush statement and gives values which are only indicative of the source level. A number of experimenters have produced a wide range of spreading and absorption coefficients dependent upon conditions local to the area of observation and the nature of the source (O'Brien, Arnt et al. 2002).

A.4 Measurement interpretation

The evaluation of the sources of underwater noise and its effect on marine biota can be assessed in many different ways, two of these are summarised below.

A.4.1 The dBht (species) levels.

The lowest level of sound that a species can perceive over its full range of hearing frequencies can be presented as an audiogram. This is, in effect the filter structure which defines the animals hearing. Levels of sound below the threshold for that species cannot be detected by that species. In the dBht(species) a frequency dependent filter is used to weight the sound. The suffix "ht" relates to the fact that the sound is weighted by the hearing threshold of the species. The

dBht(species) level is estimated by passing the sound through a filter which mimics the hearing ability of the species and measuring the sound level after the filter. The level expressed is different for each species and corresponds to the perception of the sound by the species. In effect the scale can be thought of as a dB scale where the species hearing threshold is the reference unit (Nedwell 2003).

The noise level that may be perceived by a particular species can be calculated by applying the dBht filter to the source level across the frequency band.

A.4.2 The M-Weighting

There are major differences in the auditory capabilities of marine mammals, ideally audiograms would be available for all marine mammals, however few are established. The M weighting system places marine mammals into one of five groups based on their hearing function. These five groups are:-

Low frequency Cetaceans	typically Baleen whales
Mid Frequency Cetaceans	typically Beluga whales
High frequency cetaceans	typically porpoises
Pinnipeds in water	
Pinnipeds in air	

The impact of a sound on a marine mammal is assessed by passing the sound through the appropriate filter (one of the five above) and assessing the resulting levels impact on the mammal.

The M-weighting functions have been defined primarily for exposure to strong sounds, including pulsed sounds. This is similar to the C-weighting function used for human exposure to pulsed sounds. (Patterson, S.B. Blackwell et al. 2007)

Appendix B

Conversion tables and graphs

B.1 Cubic inches to Litres.

Figure B.1 Conversion of cubic inches to Litres

Conversion based on 1 cubic inch = 0.01638 litres

B.2 Conversion of PSI to Mpa

Figure B.2 Conversion of PSI to MPa

Conversion based on 1 psi = $6.894 * 10^3$ Pa

B.3 Sound pressure level conversion $\mu V/\mu Bar$ to dB re $1V/\mu Pa$

Based upon $1\mu Pa = 10^{-5} \mu bar$

B.4 Conversion of knots to m/sec

Figure B.4 Conversion of knots to m/sec

Based on conversion 1 knot = 6080 feet/hour = 1.688 ft/sec =0.513 m/sec

B.5 Sound attenuation properties of seawater

Figure B.5 Sound attenuation properties of seawater adapted from Urick (Urick 1967)

B.6 Ambient noise levels in the ocean

Figure B.6 Ambient noise levels in the ocean adapted from Wentz and Urick (Urick 1967)

B.7 Sound transmission through air

Figure B.7 Sound transmission through air adapted from (Kaye and Laby 1986)

- 90 -

Section 6: References

Arveson, P. T. and D. Vendittis (2000). "Radiated noise characteristics of a modern cargo ship." <u>Acoustical Society of America</u> **107**(1): 11.

Austin (2004). Sound level Measurements of SEMAC-1. Australia, 2004, Sakhalin Energy: 7.

Austin, M. (2005). Maersk Rover Acoustic Source Level Measurements, Sakhalin Energy: 12.

Austin, M., A. MacGillivray, et al. (2005). Maersk Rover Acoustic Source Level Measurements, Sakhalin Energy: 12.

Barbagelata, A. (2004). Piling Noise Assessment ENCANA BUZZARD Project, CO.L.MAR: 39.

Barger, J. E. and W. R. Hamblen (1980). "The air gun impulsive underwater transducer." <u>J. Acoustical</u> <u>Society of America</u> **68 (4)**(October 1980): 7.

Barlow, J. (2006). "Mitigating, monitoring and assessing the effects of anthropogenic sounds on beaked whales." J. Cetacean Research Man **7**(3): 11.

Barlow, J. and R. Gentry (2004). Report of the NOAA Workshop on Anthropogenic Sound and Marine Mammals, 19-20 February 2004, NOAA: 26.

Barlow, J. and R. Gisner (2006). "Mitigating, monitoring and assessing the effects of anthropogenic sounds on beaked whales." J. Cetacean Research Man **7**(3): 11.

Blackwell, S. B. and C.R.Greene (2002). Acoustic Measurements in Cook Inlet Alaska, During August 2001, National Marine Fisheries Service: 38.

Blackwell, S. B. and C. R. Greene (2005). "Sounds from an oil production Island in the Beaufort Sea in summer: Characteristics and contribution from vessels." J. Acoustical Society of America **119**(1): 15.

Blackwell, S. B. and C. R. Greene (2005). "Underwater and in air sounds from a small hovercraft." <u>J.</u> <u>Acoust. Soc. Am</u> **118**(6): 7.

Blackwell, S. B., C. R. Greene, et al. (2004). "Drilling and operational sounds from an oil production island in the ice covered Beaufort Sea." <u>J. Acoust. Soc. Am</u> **116**(5): 12.

Blackwell, S. B., J. W. Lawson, et al. (2004). "Tolerance by ringed seals (Phocahispida)to impact pipedriving and construction sounds at an oil production island." <u>J. Acoustical Society of America</u> **115**(5): 12.

BMT (2005). EIA study for Heliport at Yung Shue Wan, Lamma Island, BMT.

Bouyoucos, J. V. (1981). "The Hydroshock water gun." J. Acoust. Soc. Am 70(102 Meeting): 1.

Brown, N. A., T. K. Dai, et al. (2001). <u>DP Bow Thruster Remediation in Roger Revelle, AGOR-24</u>. Dynamic Positioning Conference.

Carr, S. A., M. H. Laurinolli, et al. (2006). Cacouna Energy LNG Terminal: Assessment of underwater Noise Impacts, Golder Associates Ltd: 39.

Clark, C. W. (2002). ""As the Ocean goes so does the land: destroy the sea and the land goes with it"." <u>Shunpiking Jan 1 2004</u>: 6.

Connor, J. G. (1990). Underwater Blast Effects from Explosive Severance of Offshore Platform Legs and Well Conductors, Naval Surface Warfare Center.

Cummings, J. and N. Brandon (2004). Sonic Impact: A Precautionary Assessment of Noise Pollution from Ocean Seismic Surveys: 45.

Cybulski, J. (1977). "Probable Origin of Measured Supertanker Radiated Noise Spectra." <u>Oceans 1977</u> **1977**: 8.

David, J. A. (2006). "Likely Sensitivity of Bottlenose Dolphins to pile-driving noise." <u>Water and the</u> <u>Environment</u> **20**: 7.

Demarchi, M. W., R. C. Bocking, et al. (2006). Environmental Assessment of the Batholiths Marine Seismic Survey, Inland Waterways and Near-offshore Central Coast of British Columbia, Lamont-Doherty Earth Observatory of Columbia University: 12.

DeRuiter, S. L., P. Tyack, et al. (2006). "Modeling acoustic propagation of airgun array pulses recorded on tagged sperm whales (*Physeter macrocephalus*)." J. Acoust. Soc. Am **120**(December 2006): 15.

Dickerson, C., K. J. Reine, et al. (2001). Characterization of Underwater Sounds Produced by Bucket Dredging Operations. U. A. E. R. a. D. Center.

Dragoset, B. (2000). "Introduction to air guns and air gun arrays." Leading Edge 19(8): 892-897.

DTI (2006). An Overview of Offshore oil and gas exploration and production activities. T. a. Industry: 29.

Dwyer, R. F. (1984). Detection classification and extraction of helicopter radiated noise. N. U. S. Center: 15.

Dzwilewski, P. T. and G. Fenton (2003). Shock wave /Sound proagation Modeling results for Calculating Marine Mammal Protected Species Impact Zones During Explosive Removal of Offshore Structures, U.S. Department of the Interior: 35.

Efroymson, R. A., W. H. Rose, et al. (2000). Ecological risk assessment framework for low-altitude over flights by fixed wing and rotary wing military aircraft. E. S. D. O. R. N. laboratory: 115.

Erbe, C. and D. Farmer (2000). "Zones of impact around icebreakers affecting beluga whales in the Beaufort Sea." <u>J. Acoustical Society of America</u> **108 (3)**: 9.

Fischer, R. (2000). Bow thruster Induced noise and vibration. <u>Dynamic Positioning Conference</u>: 14.

Frisk, V. G. "Noiseonomics: The relationship between ambient noise levels and global economic trends."

Galli, L., B. Hurlbutt, et al. (2003). Boat Source Level Noise in Haro Strait: Relevance to Orca Whales, Colorado College.

Gausland, I. (1998). The Physics of Sound in Water. Chapter 3 of the Proceedings of the Seismic and Marine Mammals Workshop

Proceedings of the Seismic and Marine Mammals Workshop. M. T. a. C. Weir. London.

Gausland, I. (2000). "The Impact of seismic surveys on marine life." <u>The Leading Edge</u>(August 2000): 3.

Goold, J. C. and P. J. Fish (1998). "Broadband spectra of seismic survey air-gun emissions, with reference to dolphin auditory thresholds." J. Acoust. Soc. Am **103 (4)**(April 1998): 8.

Gordon, J. C. D., D. Gillespie, et al. (2002). Impacts of Marine acoustic technology on the Antarctic environment. <u>SCAR Ad Hoc Group on marine acoustic technology and the environment</u>.

Gordon, J. C. D., D. Gillespie, et al. (2003). "A Review of the effects of seismic survey on marine mammals." <u>Marine Technology Society Journal</u> **37**(4): 18.

Greene, C. R. (1987). "Characteristics of oil industry dredge and drilling sounds in the Beaufort Sea." <u>The</u> <u>Acoustical Society of America</u> **82 (4)**: 10.

Greene, C. R. (1988). "Characteristics of marine seismic survey sounds in the Beaufort Sea." <u>Journal</u> <u>Acoustical Society of America</u> **83 (6)** 9.

Greene, C. R. and W. J. Richardson (1988). "Characteristics of marine seismic survey sounds in the Beaufort Sea." <u>Journal Acoustical Society of America</u> **83 (6)** 9.

Greene, C. R. J., S. B. Blackwell, et al. (2007). "Sounds and Vibrations during the initial construction of a gravel Island in the frozen Beaufort Sea." J. Acoustical Society of America.

Hall, J. D. and J. Francine (1991). "Measurements of underwater sound from a concrete island drilling structure located in the Alaskan sector of the Beaufort Sea." <u>J. Acoust. Soc. Am</u> **90 (3)**(September 1991): 3.

Hammond, P. S., S. P. Northridge, et al. (2005). Background information on marine mammals for Strategic Environmental Assessment 6, Sea Mammal Research Unit: 27.

Hannay, D. (2004). Source Level Measurements from 2004 Acoustics Programme, Sakhalin Energy: 66.

Hannay, D., A. MacGillivray, et al. (2004). Source Level Measurements from 2004 Acoustics Programme, Sakhalin Energy: 66.

Harland, E. J. and S. D. Richards (2005). SEA6 Technical report: Underwater ambient noise, QinetiQ: 48.

Hastings, M. C. and A.N.Popper (2005). Effects of sound on Fish, California Department of Transportation: 82.

Hazelwood, R. (2005). Estimation of Underwater Noise - A simplified method. <u>Underwater noise</u> <u>measurement seminar</u>. NPL London.

Heathershaw, A. D. (2001). "The Environmental Impact of Underwater Sound." <u>Proceedings of the</u> <u>Institute of acoustics</u> **23**(part 4): 12.

Heathershaw, A. D., P. D. Ward, et al. (2001). "The Environmental Impact of Underwater Sound." <u>Proceedings of the Institute of acoustics</u> **23**(part 4): 12. Hildebrand, J. Impacts of Anthropogenic Sound on Cetaceans, Scripps Institution of Oceanography.

Hildebrand, J. A. (2006). The Impact of seismic survey activities on whales and other marine biota, Scripps Institution of Oceanography.

Horowitz, P. W. H. (1996). <u>The Art of Electronics</u>, Cambridge University Press.

IFAW (2004). Underwater noise, A harmful unregulated form of pollution, Stakeholder Meeting on European Marine Strategy: 17.

IFAW and NRDC (2004). Underwater noise, A harmful unregulated form of pollution, Stakeholder Meeting on European Marine Strategy: 17.

Jasney, M., J.Reynolds, et al. (2005). Sounding the depths 2, Natural Resources Defence Council: 76.

Johnston, R. C. (1988). "SEG standards for specifying marine seismic energy sources." <u>Society of</u> <u>Exploration Geophysicists</u> **Special Report of the SEG Technical standards committee**: 14.

Johnston, R. C., D. H. Reed, et al. (1988). "SEG standards for specifying marine seismic energy sources." <u>Society of Exploration Geophysicists</u> **Special Report of the SEG Technical standards committee**: 14.

Kastak, D. (2005). "Underwater temporary threshold shift in pinnipeds: effects of noise and duration." <u>J.</u> <u>Acoustical Society of America</u> **118**(5): 10.

Kastak, D., B. I. Southall, et al. (2005). "Underwater temporary threshold shift in pinnipeds: effects of noise and duration." J. Acoustical Society of America **118**(5): 10.

Kaye, G. W. C. and T. H. Laby (1986). <u>Tables of Physical and Chemical Constants</u>, Longman Scientific & Technical.

Keevin, T. M. and G. L. Hempen (1997). The Environmental effects of Underwater Explosions with Methods to Mitigate Impacts. U. S. A. C. o. Engineers. St Louis.

Kipple, B. (2002). Southeast Alaska Cruise Ship Underwater Noise, Naval Surface Warfare Centre: 40.

Kipple, B. (2003). Glacier Bay Watercraft Noise, Glacier Bay National Park and Reserve.

Kipple, B. and C. Gabriele (2003). Glacier Bay Watercraft Noise, Glacier Bay National Park and Reserve.

Kramer, F. S., R. A. Peterson, et al. (1968). Seismic Energy Sources, 1968 Handbook, United Geophysical Corporation: 57.

Leaper, R. and V. Papastravrou "The environmental impacts of shipping: a whale's eye view of ships." 4.

LePage, K. (1995). Exxon SYU Sound Propagation study, Exxon Exploration Company.

LePage, K., C. Malme, et al. (1995). Exxon SYU Sound Propagation study, Exxon Exploration Company.

LePage, K., C. Malme, et al. (1996). Mississippi Canyon Sound Propagation Study, Exxon Exploration Company: 28.

Lepper, P. (2007). Anthropogenic noise measurements and impacts for assessment of the marine environment, Loughborough University.

Leung (2001). "Sound effects on the environment." <u>Marine Engineers Review</u>.

Liss, P., R. Briggs, et al. (2005). Underwater Sound and Marine Life, IACMST Working Group on Underwater sound and Marine Life: 19.

MacGillivray, A. and R. Racca (2006). Underwater acoustic source level measurements of Castoro and Fu Lai, Jasco Research: 5.

Mason, C. (2004). Review of the potential effects of dredging in the Beaufort Sea, IMG Golder Corporation,.

Maxon, C. M. and O. W. Nielsen (2000). Offshore pile-driving underwater and above-water moise measurements, Odegaard & Danneskiold-Samsoe A/S: 31.

McCauley, R. D. (1998). Radiated Underwater noise measured from the drilling rig Ocean General, Rig tenders Pacific Ariki and Pacific Frontier, Fishing vessel Reef Venture and natural sources in the Timor Sea, Northern Australia., Shell Australia.

McCauley, R. D., J. Fewtrell, et al. (2000). "Marine Seismic Surveys - A study of environmental implications." <u>APPEA Journal 2000</u>: 15.

McDonald, M. A., J. A. Hilderbrand, et al. (2006). "Increases in deep ocean ambient noise in the Northeast Pacific west of San Nicolas Island, California." J. Acoustical Society of America **120**(2): 8.

McHugh, R., D. McLaren, et al. (2005). <u>Hydroacoustic monitoring of piling operations in the North Sea</u>. Underwater Acoustic Measurements: Technologies & Results., Heraklion, Crete, Greece.

MMC (2007). Marine Mammals and noise: a sound approach to research and management, Marine Mammal Commission, a Report to Congress: 370.

Moore, S. E. and J. T. Clarke (2002). "Potential impact of offshore human activities on gray whales." <u>J.</u> <u>Cetacean Research Man</u> **4**(1): 7.

Nedwell, J. (1994). Underwater Spark Sources: Some experimental information, Subacoustech.

Nedwell, J. (2003). Assessment of sub-sea noise and vibration from offshore wind turbines and its impact on marine wildlife; initial measurements of underwater noise during construction of offshore wind farms and comparison with background noise, The Crown Estates Office: 68.

Nedwell, J. and B. Edwards (2002). Measurements of underwater noise in the Arun River during piling at County Wharf, Littlehampton, Subacoustech Ltd: 26.

Nedwell, J. and B. Edwards (2004). A review of the Measurements of underwater man-made noise carried out by Subacoustech Ltd 1993 - 2003, Subacoustech: 134.

Nedwell, J., J. Langworthy, et al. (2003). Assessment of sub-sea noise and vibration from offshore wind turbines and its impact on marine wildlife; initial measurements of underwater noise during construction of offshore wind farms and comparison with background noise, The Crown Estates Office: 68.

Nedwell, J., A. Turnpenny, et al. (2003). Measurements of underwater noise during piling at the Red Funnel Terminal, Southampton, and observations of its effect on caged fish, Red Funnel: 33.

Nedwell, J. R. (2004). A review of offshore wind farm related underwater noise, COWRIE.

Nedwell, J. R. (2004). A review of underwater man-made noise carried out by Subacoustech Ltd 1993 - 2003, Subacoustech: 131.

Nedwell, J. R., T. Macneish, et al. (2005). Measurements of underwater noise in the River Ouse during piling for a flood alleviation scheme in the Malling Brook cell, Subacoustech Ltd: 18.

Nedwell, J. R. and K. Needham (2001). Measurements of underwater noise from the drill ship West Navion, Subacoustech: 43.

Nedwell, J. R., K. Needham, et al. (1999). Measurement of sound during a 3D seismic survey in blocks 14/14a of the North Sea, Texaco (Britain) plc.

Nieukirk, S. L., K. M. Stafford, et al. (2004). "Low-frequency whale and seismic airgun sounds recorded in the mid-Atlantic Ocean." J. Acoust. Soc. Am **115 (4)** (April 2004): 12.

NRC (2003). Ocean Noise and Marine Mammals, The National Academies Press.

O'Brien, P. E., W. Arnt, et al. (2002). Impacts of Marine acoustic technology on the Antarctic environment. <u>SCAR Ad Hoc Group on marine acoustic technology and the environment</u>.

Parvin, S. J. (2006). Underwater noise survey during impact piping to construct the Burbo Bank Offshore Wind Farm, COWRIE: 5.

Parvin, S. J. and J. Nedwell (2006). Underwater noise survey during impact piping to construct the Burbo Bank Offshore Wind Farm, COWRIE: 5.

Patterson, H. (2007). Marine Mammal Monitoring and Mitigation During Open Water Seismic Exploration by Shell Offshore Inc. in the Chukchi and Beaufort Seas, July-September 2006: 90 day report, Shell Offshore, Inc.

Patterson, H., S.B. Blackwell, et al. (2007). Marine Mammal Monitoring and Mitigation During Open Water Seismic Exploration by Shell Offshore Inc. in the Chukchi and Beaufort Seas, July-September 2006: 90 day report, Shell Offshore, Inc.

Perry, C. A review of the Impact of Anthropogenic Noise on Cetaceans, Environmental Investigation Agency: 27.

Richardson, W. J. (1995). Marine Mammals and Noise, Academic Press.

Richardson, W. J. (2006). Monitoring of Industrial Sounds, Seals and Bowhead Whales Near BP's Northstar Oil Development Alaskan Beaufort Sea 1999 - 2004. W. J. Richardson, BP Exploration (Alaska) Inc.

Richardson, W. J., C. R. Greene, et al. (1995). Marine Mammals and Noise, Academic Press.

Romano, T. A., M. J. Keogh, et al. (2004). "Anthropogenic sound and marine mammal Health: measures of the nervous and immune systems before and after intense sound exposure." Can. Journal Fish. Aquat. <u>Sci</u> 61: 11.

Roof, C. J. and G. G. Fleming (2001). Hovercraft Underwater Noise Measurements in Alaska., United States postal Service: 14.

Ross (1976). Mechanics of Underwater Noise, Pergamon.

Roussel, E. (2002). Disturbance to Mediterranean cetaceans caused by noise., A report to the ACCOBAMS Secretariat, Monaco: 18.

Scott, K. N. (2004). "International Regulation of Undersea Noise." ICLQ 53(April 2004): 38.

Simard, Y., N. Roy, et al. (2006). "Shipping noise and whales: World tallest ocean liner vs largest animal on earth." IEEE 1-4244-0115-1/06: 6.

Simmonds, M., S. Dolman, et al. (2004). Oceans of Noise 2004, Whale and Dolphin Conservation Society.

Spence, J. (2006). Controlling Underwater Noise from Offshore Gravel Islands During Production Activities, Noise Control Engineering, Inc.: 84.

Sulfredge, C. D., R. H. Morris, et al. Calculating the effect of surface or underwater Explosions on Submerged Equipment and structures, Oak Ridge Nation Laboratory: 14.

Swift, R. J. and P. M. Thompson (2000). Identifying potential sources of industrial noise in the Foinaven and Schiehallion region, University of Aberdeen.

Tasker (2005). Ad-Hoc Group on the Impact of Sonar on Cetaceans, International Council for the Exploration of the Sea: 45.

Tasker, M., C. W. Clark, et al. (2005). Ad-Hoc Group on the Impact of Sonar on Cetaceans, International Council for the Exploration of the Sea: 45.

Thompson, P. O., W. C. Cummings, et al. (1986). "Sounds, source levels, and associated behaviour of humpback whales, Southeast Alaska." J. Acoust. Soc. Am 80 (3)(September 1986): 6.

Thomsen, F., K. Ludemann, et al. (2006). Effects of offshore wind farm noise on marine mammals and fish, COWRIE: 62.

UK HSE (2002). UK Public Transport Helicopter Safety Record (1976-2002), Health and Safety Executive (UK): 37.

Urick, R. J. (1967). Principles of underwater sound, Peninsula Publishing.

Urick, R. J. (1972). "Noise signature of an Aircraft in Level Flight over a Hydrophone in the Sea." JASA **52**(3): 7.

USGS (2000). Seismic survey to map earthquake faults and other subsea stratagraphic information. C. C. Commission: 18.

Vagle (2003). On the impact of underwater pile-driving noise on marine life, Institute of Ocean Sciences. Ocean Science and Productivity division 39.

van de Sman, P. M. (1998). Environmental Aspects of Airguns, Shell EXPRO: 25.

Vos, E. and R. R. Reeves (2005). <u>Policy on Sound and Marine Mammals</u>. International Workshop, London.

Wales, S. C. and R. M. Heitmeyer (2001). "An ensemble source spectra model for merchant ship-radiated noise." J. Acoust. Soc. Am **111**(3): 30.

Weilgart, L. (2007). Underwater Noise: Death Knell of our Oceans?, Dalhousie University.

Wright, E. B. (1983). Low Frequency Acoustic Source levels of Large Merchant Ships, Naval Research Laboratory: 51.

Wursig, B., C. R. Greene, et al. (1999). "Development of an underwater bubble curtain to reduce underwater noise of percussive piling." <u>Marine Environment Research</u> **49**(1): 14.

Zykov, M. and D. Hannay (2006). Underwater measurements of Vessel Noise in the Near shore Alaskan Beaufort Sea, 2006, Pioneer Natural Resources Alaska, Inc and Flex LP: 34.