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About the E&P Sound & Marine Life Programme

The ocean is filled with a wide variety of natural and anthropogenic
sounds. Since the early 1990s, there has been increasing environmental
and regulatory focus on anthropogenic sounds in the sea and on the
effects these sounds may have on marine life. There are now many
national and international regimes that regulate how we introduce
sound to the marine environment. We believe that effective policies and
regulations should be firmly rooted in sound independent science. This
allows regulators to make consistent and reasonable regulations while
also allowing industries that use or introduce sound to develop effective
mitigation strategies.

In 2005, a broad group of international oil and gas companies and the
International Association of Geophysical Contractors (IAGC) committed to
form a Joint Industry Programme under the auspices of the International
Association of Oil and Gas Producers (IOGP) to identify and conduct a
research programme that improves understanding of the potential impact
of exploration and production sound on marine life. The Objectives of the
programme were (and remain):

1. To support planning of exploration and production (E&P] operations
and risk assessments

2. To provide the basis for appropriate operational measures that are
protective of marine life

3. Toinform policy and regulation.

The members of the JIP are committed to ensuring that wherever
possible the results of the studies it commissions are submitted for
scrutiny through publication in peer-reviewed journals. The research
papers are drawn from data and information in the contract research
report series. Both contract reports and research paper abstracts (and in
many cases full papers) are available from the Programme’s web site at
www.soundandmarinelife.org.
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use by the recipient constitutes agreement to the terms of this disclaimer. The recipient is obliged to inform any subsequent recipient of such terms.
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Executive Summary

The soundscape in the oceans results from the combination of natural, biological and anthropogenic
acoustic sources. Sounds generated by human activity include shipping, seismic exploration, active sonar,
offshore drilling, pile driving and dredging. A significant proportion of that noise is generated during the
exploration, development, production and decommissioning phases in the oil and gas industry.

The purpose of this report is to provide an updated catalogue of measurements from intentional or
unintentional sounds introduced in the sea by activities carried out by the oil and gas industry. This report
is conceived as a support tool for the assessment of the impact in the marine environment of industrial
acoustic sources. Each relevant sound source has a dedicated chapter, which includes general information
about its characteristics, operation and acoustic behaviour, followed by a table that compiles sound levels
and additional information from measurements published in the literature. This report reviews and
incorporates the findings of a previous JIP report written by Wyatt (2008). Some of the acoustic sources
covered in the report are air gun arrays, marine vibrator, acoustic deterrent devices, sonar, vessels,
dredging, drilling, production, decommissioning and aircrafts.

Few measurements have been made on underwater noise sources and those available are often
limited in their scope. Measurements from different projects can be difficult to compare due to the dynamic
conditions of the ocean, the lack of a standard method for measuring, processing and analysing the sound,
and often an incomplete description of that method and the acoustic properties of the environment at the
time the measurements were made.

Since sound level measurements can be taken at any range, a common way of normalising these
levels for comparison is to estimate the source level, or sound level at 1 m from the source. Local
geographic, geological, oceanographic and meteorological conditions have a very substantial impact on
the way sound propagates in the sea; these conditions should be considered to make a good estimate of
the source level. Analytical and numerical sound propagation models can incorporate this information, but
frequently source levels are estimated from simple experimental curves, fitted to the measured data. The
latter approach tends to overestimate source levels, and these values should be used as a guideline only.
For a correct interpretation and comparison of results, as much information as possible should be provided
about the environment and the measuring, processing and analysis approach. This report considers only
literature with a detailed description of measuring procedures, data processing and metrics; secondary
sources and grey literature have not been included, except when information is scarce.

The information in this report has been extracted from journal articles, technical reports, disclosed
military reports, product specifications, and books.
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Symbols and Acronyms

ADCP
ADD
AHD

ACCOBAMS

ASCOBANS
AF

avg,

BLD
BHD

BW

BC
BW_gap, BW_10as
CBB
cc
CDU
CIDS
CPA
CR
CRI
CcS
CSD
CcT

CTD

DC
DT

DWT

Acoustic Doppler Current Profiler
Acoustic Deterrent Device

Acoustic Harassment Device

Agreement on the Conservation of Cetaceans of the Black Sea, Mediterranean Sea and

Contiguous Atlantic Area

Agreement on the Conservation of Small Cetaceans of the Baltic and North Seas

Attenuation Factor [dB/km]
Average (subscript, accent)

Constant (= 0.55)

“At", used to indicate measured distance of a source level (e.g. 180 dB re 1uPa@50m)

Bucket Ladder Dredge

Back Hoe Dredge

Band Width

Number of propeller blades

Bulk Carrier

Bandwidth calculated at 6 or 10 dB below maximum spectral value [Hz]
Concrete Basic Brick

Cabin Cruiser

Concrete Drilling Unit

Concrete Island Drilling System
Closest Point of Approach

Cruise Ship

Caisson Retained Island

Container Ship

Cutter Suction Dredge

Chemical Tanker

Conductivity, Temperature, Depth
Speed of sound in water (21500 m/s) [m/s]; explosive charge subscript
Duty Cycle [%], Direct Current (0 Hz)
Displacement Ton

Deadweight Tonnage

Sound exposure magnitude subscript
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Eq.

FFT

Fig.

FPS
FPSO

FR
FR_gap, FR_10a8
FSO

FSU

FT

f

fo

fe

GD

GRT

GT

g
HELCOM
hw

IB

IDU

LC
LBL
LNG

LPG

MBES

MSDF

me

Equation

Fast Fourier Transform

Figure

Floating Production System

Floating, Production, Storage and Offloading

Frequency Range

Frequency range at 6 or 10 dB below maximum spectral value [Hz]
Floating, Storage and Offloading

Floating Storage Unit

Fishing Trawler

Frequency, operating frequency [Hz]

Fundamental frequency of propeller blade [Hz]

Fundamental frequency of piston engine [Hz]

Grab Dredge (a.k.a. bucket dredge or clamshell dredge)

Gross Register Tonnage

Gross Tonnage

Acceleration of gravity (= 9.81 m/s?) [m/s?]; air gun subscript
Helsinki Commission

Depth of water column [m]

Ice Breaker

Integrated Dirilling Unit

Constant

Landing Craft

Long Base Line

Liquified Natural Gas

Liquified Petroleum Gas

Sound exposure level [dB re 1 uPa®s or dBg]

Root-mean-square sound pressure level [dB re 1T uPagms) or dBms)]
Peak sound pressure level [dB re 1 pPapc or dBp]

Peak-to-peak sound pressure level [dB re 1 uPappk or dBpk-pi]
Sound exposure spectral density level [dB re 1 uPa?s/Hz]
Mean-square sound pressure spectral density level [dB re 1 uPa?/Hz]
Wavelength [m]

Multi-Beam Echo Sounder

Marine Strategy Framework Directive

Number of revolutions per cylinder and firing in the piston engine

Mass of explosive charge [kg]



max

OH
oT

OSPAR

oct

PIES

PT

P@ms)

Ppk
Ppk-pk
Ppk,unconf
Ppk,conf
Patm

By

By

pk

RMS

RO — RO

Rx

To
RL
Tmax
rpm
Pw
rms
SBES
SBL
SBP
SEL
SL
SLF
SMB

SOFAR
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Maximum subscript

Number of cylinders in the piston engine
Positive integer (1,2,3...)

Open Hatch

Oil Tanker

Oslo/Paris Convention for the Protection of the Marine Environment of the North-East
Atlantic

Octave

Pressure Inverted Echo Sounder

Product Tanker

Root-mean-square sound pressure [Pa(ms)]

Peak sound pressure [Papk]

Peak-to-peak sound pressure [Pap]

Shock wave peak sound pressure in unconfined explosive charges [Pa]
Shock wave peak sound pressure in confined explosive charges [Pa]
Atmospheric pressure (=101,325 Pa) [Pa]

Air gun chamber pressure [psi]

Hydrostatic pressure [Pa]

Peak magnitude subscript

Root-mean-square

Roll-On, Roll-Off

Reception, receiver

Range [m]

Maximum range of applicability of shock wave theory for unconfined charges [m]
Received Level [dBms), dBpk, dBe ]

Maximum range [m]

Turning rate of the piston engine [rpm]

Density of water (1025 kg/m?) [kg/m?]

Root-mean square magnitude subscript

Single-Beam Echo Sounder

Short Base Line

Sub-Bottom Profiler

Sound exposure level

Source Level [dBms), dBpk, dBe ]

Spreading Loss Factor

Steel Mud Base

Sound Fixing and Ranging
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SPL Sound Pressure Level

SPT Standard Penetration Testing

SSDC Single-Steel Drilling Caisson

SSDG Ship’s Service Diesel Generator

SSS Side-Scan Sonar

ST Super Tanker

seq Sequence subscript (for acoustic deterrents)
Tab. Table

TEU Twenty-foot Equivalent Unit

TSHD Trailing Suction Hopper Dredge

T Repetition period [s]

To Reference temperature (= 273.15 K) [K]

Ty Bubble period

TL Transmission Loss [dB]

Tw Water temperature [K]

Tx Transmission, transmitter

T Pulse duration [s]

T¢ Time constant for the pressure decay of an unconfined explosive charge [us]
typ Typical

ULCC Ultra Large Crude Carrier

USBL Ultra-Short Base Line

Ue Critical velocity of water jet from a water gun [m/s]
ve Vehicle Carrier

VLCC Very Large Crude Carrier

V; Air or water gun chamber volume [in?]

Vg tot Total volume of the air gun array [in?]

w Water subscript

741 Waveform Integration

z Depth below water surface [m]

Ze Depth of explosive charge below water surface [m]
Zg Air gun depth below water surface [m]
Zmax Maximum depth below water surface [m]

Z, Receiver depth below water surface [m]

Zg Source depth below water surface [m]
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Units

atm Atmosphere (= 101325 Pa)
bps Bits per second

°C Celsius

dB Decibel

ft Foot (= 0.3048 m)

G Giga (109)

Hz Hertz

hp Horsepower (= 745.7 W)

in Inch (= 0.0254 m)

] Joule [kg m? s72]

K Kelvin

k Kilo (103)

kg Kilogram

kn Knot (= 0.514 m/s)

M Mega (10°)

m Metre, Milli (1073)

u Micro (107°)

Pa Pascal [kgm™!s72]

ppt Parts per thousand

psi Pound per square inch (= 6894.76 Pa)
rpm Revolutions per minute

s Second

TEU Twenty-foot equivalent unit (6.1 m container length)
t Tonne or metric ton (= 103 kg)
\ Volt

w Watt [kg m? s73]
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Terminology

Air Gun Array: combination of air gun sub-arrays.
Air Gun String: set of aligned air guns or air-gun clusters.

Air Gun Subarray: group of air gun strings.

Attenuation Factor: level of attenuation with range. The attenuation factor depends on the reflection coefficient of the
seabed, scattering of the sea surface and absorption of sea water. This factor dominates in shallow waters and at long
distances from the source.

Bandwidth: difference between the upper and lower frequency of a frequency band.

Cavitation: phenomenon consisting in the formation of vapor cavities in a liquid as a result of a fast change in pressure.
The cavitation can generate considerable noise due to the collapse of the bubbles formed. The propeller in a vessel is
a common source of cavitation.

Continuous Sound: acoustic signal of long or undetermined duration.

Cumulative Energy Curve: representation of the accumulated energy of a sound event with time. This curve is typically
used for the calculation of the RMS sound pressure or the sound exposure of a transitory signal.

Decibel: unit equal to ten times the logarithm of a power ratio. The decibel is used to quantify variables characterised
by a large dynamic range, such as the acoustic pressure. The decibel can be used to express an absolute quantity by
using a reference value. Quantities express in decibels are referred to as levels. The factor that accompanies the
logarithm is 10 for acoustic power and intensity, and 10 for acoustic pressure. The decibel is denoted by the letters dB.

Deghosting: signal processing technique consisting in removing the ghost or surface reflection from a measured air
gun pulse. The ghost produces a comb-filter effect in the frequency spectrum of the pulse, and by eliminating it a
better resolution and quality image of the seabed stratigraphy can be obtained.

Density: mass per unit volume. Its unit is kilograms per cubic metre (kg/m?3). The density of sea water is a function of
temperature, salinity and hydrostatic pressure, and has a value of 1022 kg/m? for 25 °C, 33 ppt and 1 atm.

Directivity: directional signature of a sound source. A source is more directive when its directivity pattern diverts from
a perfect sphere or omnidirectional pattern. At wavelengths that are comparable to or lower than the dimensions of a
source, the directional behaviour is more pronounced.

Far Field: region of the sound field in which the sound waves originated in different parts of the source arrive practically
in phase. In this region, the irregular wavefront at the source becomes virtually spherical, resulting in a sound pressure
attenuation proportional to range. The far field occurs at an approximate range of L2/, with L the largest dimension
of the source.

Frequency: number of cycles of a periodic or harmonic wave per unit time. Reciprocal of the period. Denoted by letter
f. Its unit is the Hertz (Hz).

Frequency Band: region of the frequency spectrum delimited by a lower and upper frequency. The frequency spectrum
is divided into frequency bands, which can be constant, as is the case in a narrowband spectrum calculated with the
DFT (see PSD), or with a bandwidth proportional to the band'’s central frequency. Octave and third-octave band spectra
a examples of the latter. In an octave band spectrum, consecutive central frequencies are spaced by a factor of 2, and
in a third-octave band spectrum, by a factor of 23,

Frequency Spectrum: distribution of amplitudes and phases of a time signal in the frequency domain. The conversion
between the time and frequency domains is achieved with the Fourier Transform. The complex frequency spectrum of
a discrete time signal is calculated with the Discrete Fourier Transform (DFT).
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Ghost: sound pressure wave reflected in the sea surface. The ghost is characterised by being a inverted-phase version
of the direct, incident sound. In rough seas and at high frequencies part of the incident energy is scattered in multiple
directions, reducing the amplitude of the ghost.

Harmonics: integer multiples of a fundamental frequency.
Impulsive Sound: transitory sound characterised by high pressure and short rise time.

Lloyd Mirror: acoustic phenomenon produced by the combination of the direct sound wave and the sea surface
reflection or ghost. The Lloyd mirror is characterised by a pattern of constructive and destructive interferences, followed
by a rapid decay of sound pressure with distance.

Near Field: region of the sound field in which different vibrating parts of the source behave as individual emitters. In
this region, the difference in the travelled distance of the sound waves generated by each of these emitters is
comparable to or higher than the wavelength, which results in a pressure pattern of constructive and destructive
interferences. In the near field, the wavefront is irregular (non-spherical).

Pulse Length: effective duration of a transitory signal or pulsed sound event. The pulse length is generally calculated
as the time between the 5 % and 95 % energy on the cumulative energy curve of the event.

Peak Pressure: also referred to as zero-to-peak pressure, is the maximum absolute value of the pressure waveform.
This metric is preferred for impulsive sounds. The unit of the peak acoustic pressure is the pascal (Pa) peak. The metric
descriptor (i.e. peak) should always accompany the units for this metric. The peak acoustic pressure is calculated as
follows:

Po-p = max{|p(t)}

Peak-to-Peak Pressure: difference between the maximum and minimum values of the pressure waveform. Along with
the peak pressure, this metric is preferred for impulsive sounds. The unit of the peak-to-peak acoustic pressure is the
pascal (Pa) peak-to-peak. The metric descriptor (i.e. peak-to-peak) should always accompany the units for this metric.
The peak-to-peak acoustic pressure is calculated as follows:

Pp-p = max{p(t)} — min{p(t)}

Peak Sound Pressure Level: decibel representation of the peak acoustic pressure. The peak sound pressure level uses
a logarithmic factor of 20 and a reference value of 1 pPa.

Po-
SPLy_, = 20log (le’a)

Peak-to-Peak Sound Pressure Level: decibel representation of the peak-to-peak acoustic pressure. The peak sound
pressure level uses a logarithmic factor of 20 and a reference value of 1 pPa.

pv—p)
SPL,_, =201 <
p=p °8\1 uPa

Percentile: value below which a given percentage of observations falls.

Period: duration of one cycle of a periodic or harmonic wave. Reciprocal of the frequency. Denoted by letter T. Its unit
is the second (s).

Pressure: force per unit area. There are three types of pressure that are interesting in underwater acoustics: the
atmospheric, which results from the weight of the column of air at the sea surface; the hydrostatic, which is the
combination of the weight of the water column per unit area at a given depth and the atmospheric pressure; and
acoustic, which represents pressure fluctuations with respect to the hydrostatic pressure. Atmospheric and hydrostatic
pressures are time-invariant, at least for the time scales considered in acoustic measurements, whereas the acoustic
pressure is time-dependent. Their unit is the Pascal (Pa).

Power Spectral Density: frequency spectrum of the power of a signal, computed in constant-width bands of 1 Hz. For
a sound pressure waveform, the amplitude of the spectrum is given in Pa?/Hz. To calculate the power spectral density
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of a N-sample discrete (digital) time signal, the magnitude of the Discrete Fourier transform (DFT) is divided by the
number of samples, squared and then multiplied by the signal duration (T = N/fs). The PSD of a discrete signal x[n],
with frequency spectrum X[k], is given by:

| X [k]l

Sxxlk] = (T) T [Paz/HZ]

Power Spectral Density Level: logarithmic representation of the power spectral density. The unit is dB re. 1 pPa?/Hz.

S.xlk] = 10log(syc[k]) [dBre.1 pPa%/Hz]

Range: distance from the sound source to the receiver.

Received Level: sound level at a given range. The received level is related to the source and transmission levels by the
following equation:

RL=SL-TL

Regression Equation: equation that establishes a relationship between two variables by minimising the error between
its solution and a set of observations. A simple regression equation of the form RL = SL — SLF -log(r) — AF - ris used
in underwater acoustics to estimate the source level SL from measurements. In the previous equation RL is the received
level, r the range or distance from the source, SLF the spreading loss factor and AF the attenuation factor. Compared
to a sound propagation model, this approach is simpler but has the disadvantage of being only applicable at ranges
that are long enough for late reflections to dominate.

RMS Pressure: root-mean square acoustic pressure, that is the square root of the squared pressure averaged over
time. This is the most common acoustic metric and is particularly useful in the characterisation of the amplitude of
continuous sounds. However, the RMS pressure has been widely used in underwater acoustics to characterise impulsive
sounds, for which this metric is not best suited as pulses of different energy and duration could result in similar RMS
values. The cumulative energy curve with a 90% energy interval is typically used for the estimation of the pulse length,
necessary for the calculation of the RMS pressure. The unit of the RMS acoustic pressure is the pascal (Pa) RMS. If a
pressure value is given in Pa, without a metric descriptor, it will be assumed to be of RMS type. The RMS acoustic
pressure is calculated as follows:

1
Prms = ;f p%(t) dt

T

Specific Acoustic Impedance: ratio of acoustic pressure to particle velocity. The specific acoustic impedance is a property
of the medium and indicates the opposition of that medium to the motion of a longitudinal wave. Denoted by letter
Zo. Its unit is the pascal second per metre (Pa-s/m) or rayl. The specific acoustic impedance of an homogeneous medium
is related to its density and sound speed by:

Zy = pc

Speed of Sound: distance per unit time. Its units are metres per second (m/s). The speed of sound in water is a function
of temperature, salinity, hydrostatic pressure and acidity, and has a value of 1532 m/s for 25 °C, 33 ppt and 1atm. It is
related to the wavelength and frequency of a propagating sound wave by:

c=Af

Sound Exposure: integral of the square pressure. The sound exposure is related to the energy contained in the acoustic
signal. As such, the sound exposure is suitable for both continuous and transitory signals, in particular for dose or noise
impact assessment. Its unit is the pascal square second (Pa®s). The sound exposure is related to the RMS pressure and
is calculated as follows:
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Po-p = f pz(t) dt = p‘?ms T
T

Sound Exposure Level: decibel representation of the sound exposure. The sound exposure level uses a logarithmic
factor of 10 and a reference value of 1 uPa?s.

przms ‘T
1 pPa?s

SEL = 1010g< ) = SPLyps +10logt

Sound Level: any acoustic metric expressed in decibels. This includes sound pressure level (rms, peak, peak-to-peak)
and sound exposure level.

Sound Pressure Level: decibel representation of the RMS acoustic pressure. The sound pressure level uses a logarithmic
factor of 20 and a reference RMS pressure of 1 pPa.

SPLyms = 201log <fz’l;; )

Sound Propagation Model: mathematical algorithm that uses a numerical approximation to predict the transmission
loss experienced by the sound emitted by an acoustic source as it propagates in a given underwater environment.
Some of the most widely used propagation modelling theories and examples of algorithms are raytracing (Bellhop),
parabolic equation (RAMGeo), normal modes (Kraken) and wavenumber integration (OASES).

Source Level: sound level produced at one metre from a point source. The source level of a real source is an
hypothetical value, obtained from back-propagating measurements taken in the far-field of the source using a sound
propagation model or an empirical regression equation. The source level must not be interpreted as a true
representation of the sound level at one metre from the source, but as an intermediate metric necessary for the
estimation of sound levels in the source’s far field.

Spreading Loss Factor: level of attenuation per ten-times distance increase. A factor of 20 indicates spherical
propagation of sound, associated with free-field (i.e. unbounded) conditions, and a factor of 10 indicates cylindrical
propagation, associated with long-range propagation in-between two parallel, perfectly rigid, semi-infinite planes i.e.
waveguide). The spreading loss factor can be lower than 10 or higher than 20, specially at ranges where the direct
sound or early reflections dominate.

Streamer: surface cable consisting in an array of hydrophones used to record seismic data. Various streamers are
towed by a seismic vessel during seismic exploration. The recorded data is used to generate an image of the seabed
stratigraphy through specialised signal processing techniques.

Transitory Sound: acoustic signal of limited or determined duration.

Transmission Loss: sound attenuation level at a given range, referenced to one metre. The transmission loss can be
calculated with a sound propagation model or estimated with a regression equation fitted to sound level
measurements.

Wavelength: distance of a cycle in a propagating periodic or harmonic wave. Denoted by Greek letter A. Its unit is the
metre (m).

Xii
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1 Introduction

Ocean sounds result from natural, biological and anthropogenic acoustic sources. Natural sources include
earthquakes, lightning, wind, rainfall and swell patterns. Shipping, seismic exploration, active sonar,
offshore drilling, pile driving and dredging are some sources of human origin.

The general ambient noise in the oceans is a continuous, well characterised sound dominated by
distant shipping (< 200 Hz), wind and rainfall (0.2- 50 kHz), and thermal agitation of water molecules (>
50 kHz) (Urick, 1983). In shallow temperate waters the crackling sound produced by the claw snap of a
multitude of snapping shrimps can be the dominant noise source in the mid-frequency range; whereas in
polar regions, sounds from ice cracking may be the main source of mid-frequency noise. Anthropogenic
sounds contribute to raise these ambient noise levels during periods of activity and in localised areas, but
some of them can propagate over long distances, particularly low frequency sounds produced by large
ships and air gun arrays.

Low frequency noise has increased in the North-East Pacific at a rate of approximately 3 dB per
decade in the period from 1950 to 1998 (McDonald et al., 2006). This increase is explained by the growth
in number and size of propeller-driven vessels, caused by the expanding world economy. Working along
these lines, a simple relationship between the increment of gross domestic product of a country and the
increment of low frequency ocean noise was shown by Frisk (2012). The rise in low frequency sound levels
does not occur at a global scale and in some cases, such as in the Equatorial Pacific since 2010 or in the
South Atlantic, the trend becomes negative (Miksis-Olds & Nichols, 2016). Industrial activities are also an
important contributor to ambient noise levels, generally during limited periods and in a regional scale.
Low-frequency ambient noise may be dominated by different acoustic sources depending on the region;
for example, in the South Atlantic seismic air gun signals are the primary source, while shipping and
biological sources are the major contributors in the Equatorial Pacific (Miksis-Olds & Nichols, 2016). Small
vessels, although not contributing to the global background levels, may be important localised sound
sources.

It has been suggested that a significant proportion of the ambient noise is due to activities of the oil
and gas industries during the exploration, development, production and decommissioning phases. The
transport of oil and gas related products accounts for nearly 50% of the gross shipping tonnage, despite
using only 19% of the total number of vessels in the world’s commercial fleet (McDonald et al., 2006;
Hildebrand, 2005).

Marine animals, and marine mammals in particular, rely on their auditory system for communication,
mating and social interaction, navigation, foraging, prey detection and predator avoidance. Background
noise can mask these vital sounds and cause stress reactions, behavioural changes or even physical damage
on individuals, which may result in population impacts in the long term. The increasing evidence of the
negative effects of anthropogenic noise on marine life has motivated environmental organisations,
regulatory agencies and governments to look for solutions. Widely signed international agreements related
to underwater noise include MSFD, HELCOM, OSPAR, ASCOBANS, ACCOBAMS, and the International
Convention on Migratory Species (Erbe, 2013).
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1.1 General Notes on Underwater Acoustics

The propagation of sound underwater is very complex and may travel through several different paths
before reaching the receiver. Sound can either travel directly through the water, be reflected and scattered
off the sea surface and seabed, or even travel along the seabed and emerge in the water column at some
distance from the source. It then becomes evident that the environment will have a strong effect on the
sound field. The characteristics of the received sound depend on the acoustic properties of the source, the
nature of the propagation environment and the relative position between source, receiver and boundary
surfaces. The received level of the source signal at a specific point in the water column is dependent on
many variables, including source and receiver depths, salinity and temperature gradients in the water
column, sea bed properties, sea state and bathymetry. Many of the environmental variables exhibit
important differences depending on the geographical location and time scale (with day-night, seasonal
and long term changes).

The propagation in the water is mainly governed by its sound speed, which varies with depth and
range, and gives rise to focusing, channelling and shadowing effects (Coats, 2006; Lurton, 2010; Urick,
1983). Complex vertical variations in temperature and salinity in the water column allow for occurrence of
acoustic channels at certain depths, where sound might get trapped by effect of vertical sound speed
gradients of opposite sign. Except for long ranges, shallow waters and regions with oceanic fronts, the
sound speed can be considered horizontally stratified (i.e. strong depth dependence, weak range
dependence).

The ocean is a dynamic medium, with tides, internal and surface waves, eddies, turbulences, mixtures
of water bodies of different temperature and densities, and temperature and salinity varying throughout
the water body. These phenomena introduce a degree of variability into the sound speed profiles of the
ocean, resulting in space and time variations on the sound propagation conditions and sound levels. These
variations dominate near the sea surface, and despite being relatively small they have a significant effect
on long range propagation.

The transmission loss or sound level attenuation between source and receiver depends on four main
factors: geometric spreading, acoustic impedance of the seabed, absorption in water, and scattering from
sea surface and seabed. The spherical wave front of an acoustic wave results in a 6 dB sound pressure
attenuation per doubling of distance in free field or deep waters; in shallow waters this wave front can be
shaped into cylindrical form, reducing the attenuation to 3 dB per doubling of distance. Low-frequency
signals, such as those produced by seismic air guns, can easily penetrate the seabed and experience an
attenuation with distance potentially higher than that from spherical spreading. The sea surface returns a
phase-inverted version of the incident sound wave, producing a dipole effect which brings about a
maximum attenuation at constant depth of 12 dB per doubling of distance. In shallow waters or at long
distances the acoustic impedance of the seabed has an important effect on the transmission loss. The
absorption in sea water depends on its temperature, salinity, acidity and hydrostatic pressure, and is
particularly high for high frequency sounds (Fisher & Simmons, 1977; Francois & Garrison,1982a; Francois
& Garrison,1982b). With the appropriate propagation conditions, a 100 Hz sound signal may be detectable
after travelling in deep waters tens of kilometres from the source, or even hundreds if trapped in the so-
called SOFAR channel, whereas a 100 kHz sound signal may be completely attenuated in only a few
kilometres from the source. The typical attenuation characteristics of different acoustic frequencies in
seawater with distance from the source are given in Appendix Il.

The received level equals the source level minus the transmission losses (RL = SL — TL). The source
level is the sound pressure level that a point source, an infinitesimally small version of the original acoustic
source, would generate at one metre. The source level is a theoretical value used by those sound
propagation algorithms that base their calculations on the assumption of a point source.
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Real sources exhibit a complex sound pressure distribution in their proximity, in the so-called near
field region. In the near field, the dimensions of the individual vibrating elements that integrate the source
are comparable to the radiated wavelength, resulting in complex pressure and phase patterns. The distance
below which the near field occurs depends on the overall dimensions of the source and the radiating
frequency; for larger sources and higher frequencies the near field extends to larger distances. Beyond that
critical distance, the source starts to behave as a single radiating element and the complex amplitude and
phase fluctuations stabilise as the wavefront or area of constant phase becomes spherical; this region is
known as the far field.

The size of the source and operational constraints make it impractical or impossible to measure the
sound pressure level at T m from the source, leading in most cases to measurements in the far field region.
The far field is an acoustically stable region where the source behaves as a monopole and the point source
assumption becomes valid, as the spherical wave front is fully developed. Measuring in the far field is not
just simpler or practicable, but also allows better comparison of results from various sources.

However, to make a good estimate of the source level, an appropriate sound propagation algorithm and
realistic values for the acoustic parameters of the environment are needed. In general, information about
properties of the environment is limited, especially seabed composition. In many cases, this difficulty leads
to using oversimplified models or simple regression equations fitted to a limited set of range dependent
measurements. A range dependent transmission loss generated with a validated numerical sound
propagation algorithm is the most desirable method to calculate source levels. Source levels should be
taken carefully, especially when empirical regression equations are used to estimate them. The transmission
loss curve should always be provided to aid in the comparison and interpretation of source levels, whether
it comes from full sound propagation modelling or simple empirical curve fitting.

1.2 Outline of Review

This report aims to be a quick reference guide to the characteristics and acoustic properties of underwater
sound sources used in the oil and gas industry. There is a chapter dedicated to each relevant sound source,
which includes general information about its characteristics, operation and acoustic behaviour, followed
by a table that compiles sound levels and additional information from measurements published in the
literature. The information has been extracted from journal papers, technical reports, disclosed military
reports, product specifications, and books.

A detailed explanation of what is included in the tables and the approach followed to build them is
given in the next section, “Notes on Tables”. Gathering meaningful and representative measurements is
especially challenging due to the complexity of the underwater environment. It is then essential for the
comparison and interpretation of data included in this report to consider only literature giving a detailed
description of measuring procedures, data processing and metrics. Secondary sources and grey literature,
i.e. literature with insufficient or irrelevant information, have not been included, except when there is a
scarcity of information.

The broadband or single band levels are included in the tables. The band levels of the spectra of
various sources are not tabulated: instead, these spectra are shown in figures to make interpretation and
comparisons easier.

It is assumed that the reader has a general knowledge of the activities related to the oil and gas
industry. In case the reader is not familiar with it, a useful review of these activities is given by the
Department of Trade and Industry (DTI, 20071).
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1.3 Notes on Tables

The tables presented in this report include all or some of the following fields: source type and model,
source characteristics, water depth, sediment, measurement, source level, signal characteristics, regression
equation, description and reference. For simplicity, in those cases where the data is scarce some of the
fields are omitted and any relevant information is added to the description column.

In the first column of the tables, the type of source is indicated in bold letters, with the model in
brackets and italic letters. Sometimes the data refers to a type of source in general and not to a particular
model: in that case, the word ‘General’ is shown in brackets. Instead of the model, the name of the source
is indicated for shipping, dredging, drilling, pipe/cable laying and production sources. The name of a vessel
or platform works as a unique identifier, and including it is especially important as these sources are prone
to be measured in different projects; the data can then be related and compared, and the changes in the
noise emission pattern can be tracked. Photos of the vessels in the tables are included in Appendix Il to
aid in the understanding and interpretation of the tabulated data.

The characteristics of the source are essential to interpret the measured sound levels. This information
helps to compare sources of the same type which differ in their configuration and output power. The
source characteristics may be included in the source type and model column, to distinguish between
sources, or in the description column, as additional information.

Water depth and sediment play a critical role in the transmission of sound. In shallow waters, the
seabed properties have an important contribution to the transmission loss pattern; also, low frequencies
attenuate rapidly due to the impossibility of acoustic modes to be formed below a certain cut-off
frequency. In deep water, the spherical spreading is the main cause of attenuation, but sound may
experience low attenuation if it becomes trapped in the deep-sea acoustic channel (SOFAR), which typically
occurs at depths of around 1000 m. It is much easier for the sound to couple with the deep-sea acoustic
channel and travel long distances if the source is located at high latitudes and near the continental slope
(Etter, 2013). Sound channels can also be formed in shallow water, but are generally transitory due to the
high variability of temperature and salinity conditions. For the sound to travel long distances, the source
must be placed within the channel, the wavelength must be shorter than the channel’s width and the
channel must be stable along the propagation path.

In the measurement column, the broadband sound level measured at a certain range from the source
is quoted. In some cases, a single band or single frequency value is given. Multiple sound levels at different
ranges might be provided if the data is clear and considered relevant, but generally the closest to the
source is quoted in the tables, as the direct sound from the source is predominant in these conditions and
this is likely to provide a better representation of its acoustic behaviour. The distances quoted by the
authors are generally far enough from the source to be unaffected by the complexity of the near field
interactions. The tabulated sound levels can be peak, peak-to-peak, RMS or SEL. No measured cumulative
sound exposure levels or cSEL have been found in the literature, thus all the quoted sound levels refer to
single acoustic events.

In the source level column the sound level at 1 m is quoted. It is common practice in the literature to
provide a source level for each measured level at range. In those rare occasions where a source level is not
given by the author of a paper or report, but a simple set of measurements at various ranges is available,
we fitted a simple regression equation of the form RL = SL — SLF -logr (see paragraph below about
regression equation) to provide a source level. For some of the measurements included in the tables, the
quoted source levels are unrealistically large; those values are highlighted in red.

The regression equation column contains, whenever given by the author, the curve fitted to the
experimental data, the percentile used (95%, 90%, or 50% or median) and the range of validity, which
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corresponds to the range covered by the measurements. Except for a few exceptions where sound
propagation modelling is used, the source level quoted in the tables is obtained from the regression
equation. In the case that two regression equations are provided, each covering a different set of distances,
the source level in the curve for the closest range is quoted.

In the reviewed literature, rarely a source level is estimated using an analytical or numerical sound
propagation model: instead, a simple regression equation in the form RL = SL — SLF -logr — AF -t is
used, where SLF is the spreading loss factor, AF the absorption factor, and r the range. These regression
equations are simple fitting curves and do not account for the propagation characteristics of the
environment to determine the source level, so their accuracy beyond the measured ranges is limited.
Source levels estimated in this way, and not through a calibrated propagation model, must be used
carefully.

In general, exceptional care must be taken when using the source level as a metric to characterise the
acoustic output of a source. Near the source, at ranges of less than a few hundred meters, the sound field
is dominated by the direct signal and a series of discrete, early reflections. This results in a particularly
complex sound field, highly dependent on the characteristics of the adjacent environment and source
directivity. Further away from the source the combination of multiple high order reflections results in a
more stable decay of acoustic energy with range. Therefore, in a sound field consisting of at least two
regions with highly distinctive sound patterns, the limitations of a three-parameters empirical equation
become apparent. The empirical regression equations are useful as a summary of a large set of sound level
measurements. However, these equations should not be used as a tool for predicting sound levels beyond
the limits of the fitted measurements. This is particularly true for sound level estimates in the proximity of
the source, where the average spreading loss factor tends to be considerably lower than at larger distances.
For an in-depth discussion about source levels, regression equations and their validity at closer distances
from the source, see Section 1.4.

The signal characteristics column includes information such as pulse duration, period, duty cycle,
frequency range, maximum energy bands, bandwidth, tonal frequencies, temporal characteristics of the
signal or mechanism generating the noise.

The description column contains any additional information that can be useful for interpreting the
measurements and does not fit in any of the other columns. In general, things like the context of the
measurements, the location, source and receiver depth, source characteristics, and notes on the values
presented in the other columns are shown in the description column.

The reference column simply cites the author and year of the document in which the data included in
the table was presented originally.

The conditions within which measurements are made by different authors are diverse, as the
environment, source and receiver locations, characteristics of the target source, activity and characteristics
of non-target sources, measurement equipment or processing techniques will be unique for each project
and deployment. An effort have been made to compile as much relevant information as possible,
presenting it in a way that is clear and allows the reader to easily extract, compare and interpret data from
different acoustic sources, and environmental and operational conditions. Not all authors report their
results in the same way, so in order to provide clear and complete information the tables in this report
have been populated with data coming from text, tables and figures. Simple calculations were made on
data from the literature to report values in units that were consistent throughout the tables. Broadband
and spectral sound levels were extracted from figures in those cases where these levels were not explicitly
given in tables or text; in the tables included in this report, data extracted from figures is highlighted in
blue. In a few cases, more complex calculations were necessary for completeness or to interpret or refute
some of the results; in those cases, it was clearly stated that the values or analysis came from “the reviewer”.
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1.4 Source Level and Far Field

The source level is the sound level that an infinitesimally small version of a real source, known as point
source, will produce at a distance of one metre in a given direction when placed in a homogenous infinite
propagation medium (free-field condition). The source level is typically used to report the intrinsic acoustic
output of a source at a given angle of emission. By definition, the source level depends on direction but is
independent of the propagation medium. The source level is a parameter that not only allows for simple
comparison of acoustic outputs from different sources, it is also an essential piece of information that
propagation models based on the point-source approximation use for sound field simulations. These are
the two main reasons that lead the authors of this report to add tables that contained a thorough list of
source levels for a variety of sources, environments and operational conditions.

The concept of source level is better understood after explaining two essential concepts: the near field and
far field of a source. These two concepts refer to two regions of the space, relative to a source, with
distinctive acoustic properties. Let first consider a real source that can be modelled as a combination of
multiple small individual emitters or point sources. The pressure waves produced by those individual
emitters add up with their own particular phase at a given point in the space. In the near field, the relative
phase of these interfering waves is strongly dependent on receiver location, which results in a series of
constructive and destructive interferences along any direction from the source. In the far field, the relative
phase of the interfering acoustic waves from the individual emitters becomes virtually independent of
travelled distance. In that region, the pressure attenuation is inversely proportional to distance (TL =
20logr) and the directional behaviour of the source stabilises, becoming distance-independent. In other
words, in the far field a real source can be approximated to a directional point source. The far-field distance
depends on the dimensions of the source and the frequency of the emitted signal, and is approximated
by a?/2, with a the maximum source dimension and 2 the wavelength (Foote, 2014).

A source level does not represent the sound level at T m from a real source, as at T m the point source
condition is not met and the source appears as a multi-element distributed emitter. In that sense, a source
level is not a real sound level, but a means to calculate sound levels in the far field (i.e. at distances where
the point source approximation is valid) using a known range-dependent transmission loss. In the nearfield,
sound levels predicted from a known source level will tend to overestimate measurements. Whether
predicted sound levels from a point source approximation overestimate the real sound levels in the
nearfield will depend on the dimensions and shape of the source, frequency content of the emitted signal,
and receiver location. Nonetheless, the point source assumption will lead eventually to overestimated
sound levels at close proximity of the source, where distances are comparable to the separation between
individual emitters.

There are three main ways of obtaining source levels for an acoustic source, 1) from an acoustic source
model (e.g. Gundalf or Nucleus for air guns), 2) a range-dependent transmission loss from a calibrated
sound propagation model fitted to the measurements, or 3) a range-dependent empirical regression
equation of the form RL = SL — SLF -logr — AF - r fitted to the measurements. Some source models
provide a way of calculating source levels that account for the source directional behaviour and are fully
independent of the environment (e.g. air gun array models); other models are intrinsically linked to the
environment and cannot produce source levels that accurately characterise the sound source for all
possible environments (e.g. pile driving models). Measurement-fitting of a range-dependent transmission
loss obtained from a calibrated sound propagation model will provide a single-figure source level that
integrates the acoustic output from all vertical angles of emission (angle-independent), but which does not
dependent on the environment if done with an adequate measurement sample. The empirical regression
method is simpler than using a calibrated sound propagation model and provides a fair representation of
the sound level attenuation with range. However, simple regression curves are more sensitive to the
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measured sample, and will tend to produce biased results outside the ranges within which measurements
were taken and fitting was applied. For this reason, source levels calculated with a simple empirical
regression may only be appropriate for sound field simulations within the ranges used for the curve fitting.
It is for that reason that regression equations and their range of validity are included in the tables. The vast
majority of source levels reported in the literature that have been added to this report were calculated with
the empirical regression method; only a few used sound propagation models, not all of them calibrated.
Source levels from acoustic source models were not included. In some instances, regression equations can
lead to source level values that largely overestimate those expected for sources of similar characteristics;
those values are highlighted in red in the tables.

There are various reasons why source levels calculated from measurements can sometimes be larger than
expected. They can be caused by an uncalibrated model or by limited sound level data over range, which
result in source levels holding certain dependency with the propagation path and environment.
Measurements that do not correspond to a unique operational phase of the source can also lead to
inaccurate source levels (bias) and increased variance (uncertainty); whether the source levels have higher
bias or uncertainty will depend on the curve fitting method and the quality of the measured sample.
Additionally, when backpropagating sound level measurements to 1 m it is important that the measured
sounds originate from a single source. Unique localised sources are not always the norm, as certain activities
such as dredging or drilling are typically accompanied by vessels that operate closely to the source. In
those cases where there is no opportunity to measure the target source alone or vessels are considered
another component of the distributed source, statistically-representative measurements will be key to
avoid localised high variability due to unusual periods of vessel activity.

Some of the largest source levels found in the literature came from basic spreading-loss and attenuation
equations fitted to measurements taken in waters just a few meters deep. Under such conditions the
seabed will be expected to have a significant impact on the sound attenuation with range and spreading
loss factors greater than 40 will not be uncommon at longer ranges. Figure 1.1 shows a measurement from
an air gun array in waters 2 m deep (see Table 2.1, part 4; data from McPherson et al., 2012). This is a clear
example of how limited data over range can compromise the accuracy of the empirical regression equation.
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Figure 1.1 Sound levels (peak, RMS and SEL) measured from a 320 in® air-gun array during a seismic survey in the Beaufort Sea,
Alaska in waters ~2 m deep (from McPherson et al, 2012). The 90*" and 50" (best-fit) percentile regression equations are included
for the endfire (left) and broadside (right) directions. Source levels as high as the ones shown here may occur when using a
simple spreading-loss and attenuation equation, but are infrequent and not representative of the sound levels near the source.
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1.5 Report Structure

This report is structured in one introductory chapter, the main body consisting of five chapters, each
dealing with a different group of acoustic sources, and the appendices.

Chapter 1, i.e. the current chapter, contains background information about noise in the oceans from
natural, biological and anthropogenic sources and their potential impact on marine life. Highlights on
underwater acoustics and sound propagation are also given to help with interpreting the results and
understanding some of the concepts referred to in the main body. A brief outline of this review and detailed
comments about the content of the tables and the approach taken to build them are also included.

Chapter 2 deals with low frequency sources used by oil and gas industry for seismic exploration and
shallow hazard assessment. It includes four sections for the most common or relevant acoustic sources (air
gun array, sparker, boomer and marine vibrator) and two additional sections for historical or rarely used
sources (water gun and sleeve exploder). The air gun array is the most widely used acoustic source in the
oil and gas industry and is described in more detail. A table of measurements is included at the end of
each section for the corresponding type of seismic source.

Chapter 3 presents information about a set of medium to high frequency active sources, classified
under the title of engineering sources. It includes acoustic deterrent and harassment devices (ADD, AHD),
single and multibeam echo sounders (SBES, MBES), sub-bottom profilers (SBP), side-scan sonars (SSS),
underwater communication systems, underwater positioning systems and acoustic doppler current
profilers (ADCP). Many of these devices are types of sonar. The boomer and sparker are considered
engineering sources, but since already described in Chapter 2, these sources are covered briefly in the
chapter. A table of measurements is added at the end of each section for the corresponding type of
engineering source.

Chapter 4 deals with noise produced by different types of vessels. The chapter is structured in various
sections including general background, individual sources of sound in a ship, vessel types and their acoustic
characteristics, and a summary of sound produced by shipping activity. One table is added at the end of
sections 4.2-4.5 with measurements from four groups of vessels: large (e.g. supertankers, tankers and cruise
ships), icebreakers, medium (e.g. research and support vessels, tugs) and small (e.g. boats and hovercrafts).

Chapter 5 presents information about sounds produced by exploration, construction, production and
decommissioning activities carried out by oil and gas industry that have not been covered in previous
chapters. The chapter contains the following sections: dredging, drilling, production, pipe laying and
decommissioning. A table of measurements is added at the end of each section. A large amount of
literature on pile driving noise has been published since the publication of the last JIP report (Wyatt, 2008),
and it has been considered appropriate to produce a separate report with detailed information about
published data on sounds from pile driving activities (Jiménez-Arranz et al., 2017).

Chapter 6 presents data of noise transmitted underwater by overflying aircrafts, including fixed and
rotary wing models. A table of measurements is included at the end of the chapter.

Appendix | includes some additional information about underwater acoustic sources not related to oil
and gas industry. The chapter contains three tables with information about sounds produced by industrial,
military, natural and biological sources. The idea of this chapter is to provide a general picture of the sound
in the oceans to allow industry, regulators and scientific community to gain a better understanding of the
relative contribution of sounds produced by oil and gas industry. Appendix Il includes two figures: one
describing ambient noise levels as a function of shipping traffic and sea state, and the other showing the
sound level attenuation with frequency due to absorption in sea water. Appendix /Il shows pictures of the
vessels included in the tables. These images are expected to aid the reader in interpreting the
measurements.
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2 Seismic Sources

Seismic surveying is intended to study the composition of the upper crust of the seafloor. These surveys
are conducted for a variety of reasons; checking foundations for roads or large structures or detecting
resources like groundwater or minerals are some of them, but most of commercial seismic surveys are
conducted for detection (exploration) and monitoring (production) of oil and gas (OGP, 2011). The seismic
sources are primarily used by the oil and gas industry to investigate shallow subsoil structures before
engineering site work, or deeper layers in the search for fossil fuels.

Every marine surveying technique uses a particular configuration of source and receivers to send
sound waves into the earth and capture the reflected energy. The strength of the reflected wave and the
time it takes to travel through the different layers in the seafloor and back to the sensor are processed to
get a stratigraphic image of the earth’s crust (see Figure 2.1).

§ONEAR gl SEMENT |

S HOLE 105 —— AEMENT &

Fom ¥ 3 v @

LB :
=
-8

Figure 2.1 Example of a reflection seismogram (DSDP Initial Reports, Vol. 11, Ch. 6, 1972, deepseadrilling.org/i reports.htm)

The selection of the seismic source is based on survey requirements. The acoustic energy emitted by low
frequency sources, such as air guns, is concentrated below 250 Hz, making its signal capable of penetrating
the deeper layers of the seabed. Seismic sources with a higher frequency output, such as sparkers or
boomers, do not penetrate so deep into the seabed. These can only reach depths in the order of hundreds
of metres, however they can generate higher resolution images. High resolution surveys are aimed for
shallow hazard assessment, whereas deep penetration "

surveys are common in oil exploration and production. I tverage 1994-2005
I February 2020

Offshore oil and gas exploration, development |
and production activities typically take place in
continental margins. Operations have traditionally
been conducted in shallow waters on the continental
shelf, but the need for new resources moved the
operations to deeper waters. The relatively high
activity of seismic exploration, along with the
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where low frequencies propagate better, could have
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an important effect on background noise levels inthe  Figure 22 Average number of offshore seismic
oceans. The average number of seismic surveys exploration operations per month from 1994 to 2005 (blue

conducted per month and recorded from 1994 to 2005 bars, Hildebrand 2009), and snapshot of tOta‘h number of
operative geophysical survey vessels on 27" Feb 2020

is represented in Figure 2.2 for different regions of (purple, Searcher Seismic app). Results shown by region.
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world, along with a snapshot of the number of active geophysical survey vessels (seismic and geotechnical)
on the 27" February 2020. The number of active seismic surveys has certainly diminished since the financial
crisis in 2008. On 2015, the worldwide fleet comprised at least 168 seismic vessels (Paganie, 2015).

A summary of the most commonly used seismic sources by the oil and gas industry is presented in
the next sections. A table including measured sound levels from different seismic sources, along with
location, source characteristics and some additional data, is presented at the end of each section.

2.1 The Air Gun

Air guns produce high levels of low frequency sound, most of it below 250 Hz, by releasing a volume of
highly pressurised air into the water, which produces 90 percent of its energy in the band 70 to 140 Hz
(van de Sman, 1998). Air guns are generally combined in an array to produce a low frequency acoustic
beam aimed toward the sea floor. The acoustic emission of the air gun array is not limited to low
frequencies and to the vertical downward direction: frequencies up to 20 kHz and significant lateral acoustic
energy can be emitted into the surrounding water (Tashmukhambetov et al.,, 2008; Landrg et al, 2013).

The air gun is the most common and most powerful frequency source used by the oil and gas
industry. The compressed air enclosed in the pneumatic chamber of an air gun is released rapidly into the
water, generating a high-level acoustic pulse. The bubble formed by the released mass of air produces a
series of amplitude oscillations, which attenuate with each expansion and collapse of the bubble until it
reaches the equilibrium state (see Figure 2.3, left).

The defining properties of an air gun are the pressure and volume of the chamber; typical volumes
for a single air gun vary from 20 to 800 in3, with 2000 psi being the most commonly used chamber pressure.
Air guns with higher volume, higher chamber pressure or placed at shallower depths produce bubbles with
lower dominant frequency (Landrg & Amundsen, 2010). The relation of the bubble frequency to the water
temperature and the volume, chamber pressure and depth of the air gun is described by Eq. 2.1 (Landrg,
2014). This equation accounts for the effect of water temperature, not included in the original Rayleigh-
Willis equation; the approximate term on the right is the Rayleigh-Willis equation (Willis, 1941).

5 5
popluentoegz)t ) | To Ty (105 21
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where Py, is the atmospheric pressure in Pa (P, = 101325 Pa), p,, the density of sea water in kg/m? (p,,
= 1025 kg/m?3 at water surface, 20°C and 35 ppt salinity), g the acceleration of gravity in m/s, z, the depth
of the air gun below sea surface in m, P, the chamber pressure in Pa, Vj; the air gun volume in m?, T,, the
water temperature in K, T, the reference temperature (T, = 273.15 K), and k and a constants (a = 0.55,
with k a constant of proportionality).

Beyond a certain distance, which depends on the dimensions and maximum wavelength of interest,
any source in free field can be modelled as a monopole. This distance is known as the far-field. A typical
example of the far-field acoustic signature produced by a single air gun is shown in Figure 2.3. A primary
sharp peak, a number of secondary peaks of decaying amplitude associated with damped bubble
oscillations, and the phase-inverted copy or ghost that follows each positive peak, are the primary features
of the time source signature of an air gun (see Figure 2.3, left).

The air above the sea surface acts as a mirror for any incoming underwater acoustic wave, reflecting
most of its energy with an inverted phase. This phase-inverted copy of the acoustic pulse is known as ghost
reflection and is of key importance from the point of view of seismic data processing. A destructive
interference is produced when the ghost signal blends with the original downward travelling pulse,
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introducing a comb filter effect in the spectrum that reduces the effective bandwidth (see Figure 2.3, right).
The low-frequency harmonics that appear in the first 100 Hz of the signature’s frequency response are
caused by the stable oscillation period of the air bubble.

Netural bubble decay

Relative amplitude (d8)

s

Bubble oscillation period

Pressure amplitude (bars @ 1m)

Time (milliseconds) Frequency (Hz)

Figure 2.3 Source signature of a 150 in® air gun in bars (left) and its normalised amplitude spectrum in dB (right). From OGP (2011)

The depth of the source selected for the survey is a decisive parameter, as it will determine the
maximum depth of penetration and resolution of the seismic image — deeper sources result in better
penetration and shallower sources provide better resolution — The useful band of an air gun pulse is
between the first notch (DC) and second notch in the spectrum. High resolution, shallow subsurface surveys
require shallower depths, i.e. second ghost notch at higher frequencies; and low resolution, deep
penetration surveys require deeper depths, i.e. second ghost notch at lower frequencies. The normal
operating depth for air guns is between 5 and 7 m (Gausland, 1998). However, deeper source operation
have become more common since the introduction of the GeoStreamer in 2007, which facilitates
deghosting of measurements through dual-sensors (hydrophone, accelerometer) installed in the streamer.

Not only the depth of the air gun, but also the depth of the receiver, affects the received level. Sound
levels closer to the sea surface are lower than away from it. The greatest attenuation gradient occurs in the
first few metres from the surface. This is explained by the so-called Lloyd’s mirror effect, a dipole-type
spatial sound pressure pattern that results from the high reflectivity of the water-air boundary.

In deep waters or close to the source, where the direct signal and surface reflection dominate and
seabed contribution is minimal, the source can be reasonably approximated to a dipole, provided that the
receiver is placed in the far field. This dipole consists in the original monopole (the air gun array) and an
imaginary monopole of opposite phase (the ghost source), placed symmetrically with respect to the sea
surface. This dipole or Lloyd's mirror produces a spatial interference pattern, creates a spectral comb-filter
and enhances the vertical directivity of the source, especially in the low end of the spectrum, for which the
sea surface is effectively flat. No relevant examples of air gun arrays measured at multiple receiver depths
have been found in the literature to illustrate the influence of the Lloyd's mirror on received sound levels.

The energy of the primary pulse of an air gun is concentrated between 10 and 200 Hz, which is the
typical range of interest in seismic surveying. Frequencies up to 20 kHz can be emitted by the air gun
(Tashmukhambetov et al., 2008; Landrg et al, 2013; Khodabandeloo & Landrg, 2017), but their amplitude is
generally small compared to the lower end of the spectrum, below 1kHz. According to Landrg et al. (2013),
the high frequency content of the measured acoustic signal varies with size and total volume of the air gun
array, and is believed to be caused by ghost cavitation in the space between air gun strings. For a 2730 in?
air gun array consisting of three strings separated by 6 m and deployed at 5 m depth, the peak amplitude
of the high frequency event appears to be 15-30 times lower than the amplitude of the primary peak (i.e.
24 — 30 dB difference).
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The air gun array is the source used in marine seismic exploration. It typically consists of a few groups
of 6-8 aligned air guns or air gun clusters, each called a string. An air gun array is made up of one or more
sub-arrays, with 1-6 strings each (see Figure 2.4 and Figure 2.5). The volume of an air gun array is the sum
of the volumes of the individual guns, and is typically in the range of 3000-8000 in?, although air gun arrays
with larger or smaller total volumes are not uncommon. The air guns hang beneath floats, between 3 and
10 m below the sea surface and generally at 6 m (see Figure 2.4). During a survey the air guns are activated
at regularly spaced source-point intervals, every 10-15 s depending on vessel speed. The activation interval
depends on the source-point distance and the speed of the source vessel.

Gun Array Depth

Figure 2.4 Side view of a string of air guns. There are 12-guns arranged in 2-gun clusters. The yellow tube provides floatation and
the guns are hung below at the desired depth. Precise positioning is provided by combining information from the RGPS in the
float and the acoustic pingers under the guns (left). Suspended single air gun (right). From OGP (2011)
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Figure 2.5 Air gun array layout from NUCLEUS+ (left) and deployment example (right). The source vessel is towing two arrays.

There are two main reasons for deploying air guns in arrays: The first is to increase the power of the source.
The second is to minimize the bubble oscillations by tuning the array; air guns with different volumes will
have different bubble periods, leading to a constructive summation of the first (primary) peak and
destructive summation of the bubble amplitudes.

The basic idea behind the increase of source strength in an array when compared to a single air gun
is that a source array of n single sources produces n times the acoustic pressure of the single source.
Neither the chamber pressure nor the total volume of the array have a crucial influence on its strength.
The strength or peak-to-peak amplitude of the pulse generated by the array in the vertical direction is in
the range of 10-100 bar-m (240-260 dB re pPa@1m). The strength of an air gun array is: 1) linearly
proportional to the number of air guns in the array; close to linearly proportional to the firing pressure of
the array; and roughly proportional to the cube root of its volume (Caldwell & Dragoset, 2000). This is
summarised in the following expression:

Py % nB, VM3 (2.2)
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where p,, is the peak pressure emitted by the air gun array in free field, n is the number of air guns in the
array, P, the chamber pressure and V, the total volume of the array. A comparison between measured
peak source levels from Table 2.1 and peak levels calculated with Eq. 2.2 is shown in Figure 2.6. The
difference in decibels between peak and rms source levels is assumed to be constant with distance, so that
the rms levels in the tables and the levels calculated with Eq. 2.2 can be directly compared. Fig. 2.6 shows
a good agreement between measurements and calculations, highlighting the rapid increase and then the
stabilisation of the output pressure as the number of air guns and the total volume increases. The high
variability in the measured source levels can be attributed to the limited accuracy of experimental
regression equations to estimate the sound level at T m from the source.
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Figure 2.6 Peak source level of an air gun array as a function of the number of air guns and its total volume. Comparison between
measurements (blue, see Tab. 2.1) and approximate equation (orange, see Eq. 2.2).

The pressure signature of an air gun array is measured in the far-field (200-250 m beneath the array), where
the array behaves as a point-source, and is then normalized to a distance of 1T m. Due to the constructive
interference achieved far away from the source through the synchronisation of air gun firing times, the
pressure level at 1 m tends to be considerably lower than the far-field level normalised to T m (~20 dB
difference). The time it takes for an air gun signal to reach the maximum amplitude once triggered depends
on its chamber volume; for the peaks to merge in the far field, air guns with different volumes are activated
at different times. The main parameters used to characterise the signature of the array are the strength of
the primary pulse (i.e. peak amplitude) and the primary-to-bubble ratio (PBR). The higher the PBR the closer
is the signature to a single pulse (see Figure 2.7, left). It can be noticed how the bubble oscillations are
drastically reduced in the array (compare with Figure 2.3, left). Two other important features of the array's
signature are the rise time of the primary peak and the length of the bubble pulse.
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Figure 2.7 Source signature from a 4450 in® array with 33 guns (left) and its normalised amplitude spectrum in decibels (right).
From OGP (2017).
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The acoustic energy emitted by an air gun array is not the same in all directions; the array is designed to
project most of its energy vertically downwards, and as a result pressure levels emitted horizontally are 15-
24 dB lower. Factors that contribute to this directional radiation are the arrangement of the sources in a
horizontal plane, the dimensions of the array, the distribution of the air gun volumes within the array, the
synchronised activation of the individual air guns and the proximity of the array to the water surface. Figure
2.8 shows that most of the energy between 20 and 180 Hz is projected downwards, low frequency radiation
tends to be more omnidirectional, high frequency radiation presents secondary lobes and the array is more
directive in the cross-line direction. The latter is explained by the number of air guns per subarray, which
is larger than the number of subarrays. Figure 2.9 shows the broadband acoustic field created by the array
in the horizontal and vertical planes.

Frequency Frequency

nonmaliied amplitade (dB)

50 Y % N Et] 0

Figure 2.8 Modelled sound pressure level emitted by a 1760 in® air gun array in a vertical plane in cross-line (left) and in-line
(right) directions. The vertical angle of emission is represented by the radial lines and the frequencies (0-180 Hz) are shown in
concentric circles. The coloured pattern represents the sound pressure levels. The array has two identical strings with three paired
air guns each, which leads to an asymmetry in the horizontal directivity pattern. Models from Gundalf™.
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Figure 2.9 Modelled broadband (0-400 Hz) peak sound pressure level emitted by a 5205 in® air-gun array at 7.5 m depth in the
horizontal plane (left) and in the vertical plane (right). The yellow crosses show the position of individual guns. From OGP (2011).

An air gun array is designed to direct as much energy as possible towards the seabed. However, most of
the acoustic measurements are taken at a distance from the source, away from the main vertical beam.
Characterising the sound field under the array is also important to gain a full understanding of the potential
impact in the marine environment.

The horizontal directivity certainly exists, but may be difficult to identify from the values in the tables
due to the influence of the environmental conditions and the limited accuracy of the method used in the
literature to estimate the sound levels at 1 m.
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2.1.1 Sound Levels with Range

Overall sound levels decrease as the distance from the source increases, as a result of geometric spreading,
absorption losses in water and seabed, and scattering in seabed and sea surface. The attenuation rate of
the SPL with distance at a predetermined source and receiver depth is somewhere between a cylindrical
and a hyper-spherical spreading law (1/r and 1/r% i.e. 3-12 dB per doubling of distance), and primarily
depends on water depth, bathymetry and seabed geology along the propagation path. The transmission
loss is not a simple function of range, and a single spreading loss curve may not be sufficient to describe
the different attenuation patterns that occur at different ranges. The sound levels produced by a 3147 in?
air gun array at two sets of ranges are shown in Figure 2.10. Note that two regression equations had to be
calculated to cover all distances.
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Figure 2.10 Sound levels (peak, RMS and SEL) measured from a 3147 in® air-gun array during a seismic survey in the
Chukchi Sea, Alaska (from Funk et al, 2008). The measured sound levels and the 90" and 50" (best-fit) percentile
regression equations are included for two sets of distances: 100 m to 20 km (left) and 20 to 80 km (right).

Far field simulations of air gun array signatures indicate that peak sound levels are of the order of 265 dB
for some of the largest air gun arrays (~4000 in®). Source levels with peak and rms values larger than 270
and 250 dB should be treated with suspicion, as those values will suggest a flaw in the approach followed
to back-propagate measured sound levels to T m (see Section 1.4 for possible causes for inaccurate source
levels).

In the nearfield, sound levels predicted with the point source assumption will tend to overestimate
levels measured in practice. Fontana and Boukhanfra (2018) reported measurements on a 2-string air gun
array with an active volume of 3,090 in3 (10 active clusters) made with the 36 array’s near-field hydrophones
at distances from 4 to 56 m from the centre of the array. The sound level measured at the closest distance
of ~4 m was 144.5 dB, ~6 dB lower than the predicted far-field signature back-projected to 4 m using
spherical spreading loss. The predicted far-field signature was 6-12 dB higher than the maximum near-field
sound levels at the measured ranges of 4, 22, 29, 48 and 56 m from the centre of the array.

2.1.2 Pulse Duration with Range

The duration of the recorded sound event produced by a seismic source tends to increase with range
(Green and Richardson, 1988). The loss of high frequency energy with distance results in a smearing effect
that affects the individual reflections contained in the event. This along with the higher number of
reflections that reach the receiver as the range increases contribute to extend the duration of the event.

A report written by Beland et al. (2013) regarding the monitoring and mitigation of marine mammals
during a seismic survey in 2012 contains a detailed analysis of the duration of pulses produced by a 70 in3
air gun and a 4380 in®air gun array, both measured in shallow and deep water locations. The pulse duration
was calculated as the duration of the window containing 90% of the signal energy. The pulse duration is
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shown to increase with distance, for both sources and at both locations, and varies from 0.1to 2 s between
300 m to 80 km range. Figure 2.11 shows some of the results presented in the report: It is worth noting that
as the pulse duration changes with range, so does the relationship between SPLxs and SEL.
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Figure 2.11 90% energy pulse duration from a 70 in® air-gun (left) and a 4380 in* air-gun array (right), measured in a shallow water
site (50 m water depth) during a marine seismic survey in the Beaufort Sea (from Beland et al., 2013)

2.1.3 Pulse Spectra in Dispersive Media

In the same study from Greene & Richardson (1988) it is shown that the frequency characteristics of the
received signal varied with range and water depth. The higher frequency components of the pulse arrived
before the lower frequencies. This downward frequency sweep is characteristic of long range pulse
propagation. Hauser et al. (2008) make a detailed analysis of the effect of range on the frequency
characteristics of the signal generated by an 880 in3 air gun array during a marine seismic survey in the
Colville River Delta, in very shallow waters (< 15 m). The drift of the pulse with time toward low frequencies
is likely the result of the combined effect of the low-frequency components associated with bubble
oscillations and the dispersive characteristics of the shallow water medium (see Figure 2.12, left). The wave
transmitted into the seafloor can return to the water column after travelling along shallow geological layers
(head wave) and then be detected before the direct pulse, as low frequencies that penetrate the seabed
travel faster than the sound in water. (see Figure 2.12, right). Both phenomena, head waves and frequency
dispersion, contribute to build air gun pulses of longer duration at longer distances from the source. This
same behaviour for the received air gun pulses has been highlighted in other reports (Beland et al.,, 2013).
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Figure 2.12 Spectrogram of 880 in® an air-gun pulse measured during a marine seismic survey in the Colville River Delta (from
Hauser et al., 2008), in very shallow waters (< 15 m). The figures show the downward chirp effect caused by frequency dispersion
(left) and the early arrival of the low frequency head wave (right).
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2.2 The Sparker

The plasma sound source, more commonly known as sparker, is a relatively high powered, low-frequency
acoustic source which produces an intense acoustic pulse by an electrical discharge. The pulse covers a
relative broad frequency band, from 50 to 4,000 kHz, with source levels typically in the range of 210-220
dBms. It can only operate in salt water, in order to meet the conductivity requirements of the system. The
sparker provides good vertical resolution (0.5 — 10 m) and reasonable sea floor penetration (< 1km).

A large electrical charge is stored in a capacitor bank, which when released, generates an electrical
arc between two electrodes in the conductive fluid (salt water). A vapour bubble is formed, which grows
and collapses until the equilibrium state is reached. The implosion of the bubbles creates the shock wave
(Duchesne & Bellefleur, 2007).

Sparkers were very popular during the 1960s before being replaced by small-volume air guns
(Trabant, 1984). The lower penetration of sparkers compared to air guns, the complexity of the acoustic
signature, the danger associated to the high voltages and electrical charges necessary to generate the
spark or the disruption or damage of nearby equipment by the powerful electromagnetic interference
produced by the spark are some of the drawbacks associated to this source (Duchesne & Bellefleur, 2007;
Trabant, 1984; Nedwell, 1994). However, since the 1990s the sparker technology has regained popularity
because of the low cost and simple deployment, but also because it still can be used in certain areas where
air guns are restricted due to environmental concerns (Duchesne & Bellefleur, 2007).

The acoustic signature of the sparker is long and complex. The electric discharge creates a series of
secondary bubbles that extend the duration of the pulse (25 — 50 ms) and attenuate frequencies of interest,
by the effect of their destructive interference. The variable discharge paths associated with the array of
electrodes add more complexity to the signature (Duchesne & Bellefleur, 2007). Figure 2.13 shows a typical
spark signature, with arrows pointing to the secondary bubble pulses.
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-0.2
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—_—
0 10 20 30 40 50 60
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Figure 2.13 Sparker Dura-Spark (left, from www.appliedacoustics.com) and acoustic signature of an 8 kJ sparker array; arrows
point to the secondary pulses (from Duchesne & Bellefleur, 2007).
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2.2.1 Tables

Table 2.2 Sounds produced by sparkers

Source Measurement  SL Signal Description Reference
(Model) [dB re 1pPa] [dB re TuPa@1m] Characteristics
Sparker A A 216-202 Pulsed /A Cluster Maritime
(General) Pk T=15ms Francais, 2014
Sparker Pulsed 8 kv spérker, 1 mm electrode gap
X N/A 212 dBy@ 0.25 m? 200 dBpy . Tested in tank Nedwell, 1994
single T=0.2ms (3 us main peak) .,
TL = 20-logqor
Sparker A A 21 db WA 300 v Richardson et al,
sparker

single oK P 1995
Sparker )
single N/A N/A 216 dB T=15ms Maximum energy output 1200 ) | APPed

g_ me £ P Acoustics, 2008
(Squid 500)
Sparker )
single N/A N/A 222 dB T=15ms Maximum energy output 2500 J Applied

g. e % P Acoustics, 2008
(Squid 2000)

Pulsed
Minisparker T=46s Towed ¢l n{ 1
single <200m | N/A 209 dByms T=08ms EOWE _Coset ?OSS:J ace (<1m) USGS, 2000
(Squid) Frequency range 150-1700 Hz nergy input .
Main energy at 900 Hz

2.3 The Boomer

The boomer is an electro-mechanical acoustic source, which produces a short-duration, broadband pulse
by sending an electrical impulse to two spring-loaded plates. Boomers consist of an electrical coil
magnetically coupled to a metallic plate and attached on the other side to a moving diaphragm. The
energy contained in the capacitors is discharged into the coil, so the induced magnetic field causes the
diaphragm to vibrate, radiating sound into the water. The higher energy transmitted into the plate will
result in a longer and lower frequency pulse (Applied Acoustics, 2013).

DIAPKRAGH

MOUNTING HOLE
ON ALL CORNERS

ELECTRICAL |
CONNFETIONS

Figure 2.14 Sketch of an AA2xx boomer plate (left) and photo of the A200 system (from www.appliedacoustics.com)

The source operates in a frequency range from 0.3 to 6 kHz, with the dominant frequency between 1.5 and
3 kHz (see Figure 2.15). Source levels are in the range of 205-225 dBns. The frequency response of the
boomer is in the higher end of the spectrum for seismic sources, and is characterised by vertical resolutions
of 0.5 to Tm and penetration of 25 to 50 m. The system is commonly mounted on a sled and towed behind
the boat. Boomer systems have similar resolution and penetration capabilities to chirp sonar (see
subsection 3.4.1); the magnitude of the acoustic output and frequency range provide boomers with greater
penetration depths, but rather lower horizontal and vertical resolutions (Dix et al; Genesis, 2011).

Boomer data has some particularities that make it difficult to be processed. Some of these include:
low signal to noise ratio, variations in the acoustic signature, hemispherical spreading which results in lack
of focusing, and the way in which the signal becomes attenuated in sediments (Dix et al, n.d.).
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Figure 2.15 Typical pulse signature (left) and spectrum (right) of an AA200 boomer plate system (from Applied Acoustics, 2013).
2.3.1 Tables

Table 2.3 Sounds produced by boomers

Source SL Signal Description Reference
(Model) [dBre uPa@Im]  Characteristics
Boomer NA 212215 012 -04 NA Cluster Maritime
(General) P R ams Francais, 2014
T=051s
Boomer =0. -10 -
>200 205 dB,ps = 034ms Z=10-100m USGS, 2000
(Huntec) Frequency range 0.5-8 kHz Energy input 340 J
Main energy at 4.5 kHz
Boomer A 209 dBins 10400 Measured BW = 0.5-300 kHz ie”ﬁsz';(m"t_
T = 150- s R pplied Acoustics,
(AA307) 215 B Energy input 300 J 2010
Boomer
N/A 227 dByms T=<02ms 53138 transducer Ashtead, 2014
(GeoPulse) Energy input 280 J

2.4 The Marine Vibrator

In a marine vibrator, a moving plate oscillates in a controlled manner, excited by a hydraulic or electrical
system (Tasker & Weir, 1998; OGP, 2011). The usual signal is a chirp, a frequency sweep in the range of 5 —
100 Hz with a typical duration of 10 s.

Figure 2.16 Marine vibrator unit (left) and illustration of the deployment of an array of marine vibrators (right). From OGP (2011).

The seismic image generated from a single marine vibrator after correlation is comparable to that from an
air gun sub-array. However, its low frequency response has historically been poor, and has also suffered
from frequent mechanical failure when compared to air guns (Tasker & Weir, 1998; OGP, 2011), although
recent updates have further improved its acoustic behaviour. As complex mechanical systems, the dynamic
response of marine vibrators experience non-linear effects and high-frequency harmonics (Sérnmo et al,
2016). These factors have resulted in a limited use of marine vibrators in the offshore industry.
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However, the marine vibrator offers numerous environmental and operational advantages:

- The emitted acoustic energy is spread over time, for instance several seconds compared to the
few hundred of milliseconds duration of an air gun signature, and that results in a lower
instantaneous sound pressure level (Bird, 2003). A typical air gun array will generate 255 dBo-,
whereas an array of four marine vibrators will generate approximately 223 dBo., (Bird, 2003).

- Characteristics of the output signal such as frequency, amplitude and duration can be directly
controlled. Having precise control on the acoustic output can reduce the environmental impact
even further by attenuating the frequencies that are critical for marine life (S6nmo et al, 2016);
but also means that the emitted signal is known, so that it can be used to extract the reflection
information from the recorded data by correlation (Tasker & Weir, 1998).

- There is a deep understanding of the physics involved in the mechanical and acoustic behaviour
of marine vibrators (OGP, 2011).

- The source depth affects the low frequency content of the emitted signal and its ability to
penetrate the deeper layers of the seafloor. Marine vibrators can generate a full acoustic output
at source depths as little as 1 m, which makes them better suited than air guns to shallow waters
and transition zone environments. Moreover, the sound levels produced by these devices are
considerably smaller than those from air guns, which contributes to reduce the acoustic impact
in shallow waters, ecologically rich areas where the likelihood of affecting marine life is even
higher (Bird, 2003; Tengham, 2006).

- Can be used as a standard towed acoustic source in shallow water, or as a stationary source in
transition zone environments (Tengham, 2006).

- Requires only an electrical power supply and can be easily transported (Tengham, 2006).

Biestrical coil Accelerometer
il L Flextensional

shell

Spring element Magnetic circuit

Figure 2.17 3D rendered image of a marine vibrator (left) and schematic of the principle of operation of the transducer (right)
(from Sérnmo et al, 2016).

Constructing marine vibrators with high efficiency and linear dynamics is however difficult, and these
systems suffer from friction, backlash and high-order harmonics (S6nmo et al, 2016; Tasker and Weir, 1998).
Detailed descriptions of the mechanical design of marine vibrators can be found in Graydon & Delbert
(1969), Tenghamn (2006), and Tenghamn (2009). Nevertheless, some advances have been achieved in the
last few years and a Joint Industry Program is taking place to develop and test marine vibrators (Jenkerson
et al, 2018; Feltham et al, 2016). In this project, three major oil and gas companies (Total, Shell and
ExxonMobil) contribute with their own prototype. The systems have already been built and tested, and the
results are currently being analysed to determine whether they fulfil the required technical specifications.
Other companies are contributing with their own systems, each at a different stage of development. Among
these companies are PGS, Applied Physical Sciences, Teledyne, CGG, Schlumberger, Geokinetics and
GPUSA.
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2.5 The Water Gun

Water guns appeared after the air gun as a new alternative to explosive charges. Today, the water gun is
rarely used in seismic acquisition (Landrg & Amundsen, 2010), but it still can be found in certain research
activities.

The operation of the water gun is similar to that from an air gun, with the difference that a volume of
water is released instead of air. The same physical principle involved in the sound produced by a snapping
shrimp is used by the water gun; strong local velocity variations will cause low pressure cavities, which will
produce a high intensity pulse when collapsing by the effect of the hydrostatic pressure (Landrg &
Amundsen, 2010). The activation process can be summarised in these four steps: 1) after release, the
compressed air in the chamber propels the shuttle at high velocity, which in turn forces the water in the
cylinder through the ports, forming a high velocity water jet outside each port (see Figure 2.18, image c);
2) the shuttle decelerates rapidly, and an internal cavity is formed in the nozzle as the displaced mass of
water separates from the piston (see Figure 2.18, image d); 3) the cavity inside the air gun collapses, as
external cavities are formed behind the water jets due to the high velocity contrast; 4) as the velocity of
the water jet decreases, the pressure in the associated cavities increase, until they eventually collapse due
to the hydrostatic pressure (Landrg et al., 1993).

The water gun signature comprises two signals: the precursor and the main pulse. The first peak of
the precursor is caused by the water escaping through the ports, while the second peak is associated to
the collapse of the internal cavity formed inside the port nozzles. The primary pulse results from a shock
wave produced by the collapse of the external cavities attached to the water jets.

The cavities appear when the water jet reaches a minimum velocity. That critical velocity u. can be
approximated by u, = m in m/s, where P,, is the hydrostatic pressure in Pa and p,, the density of
the surrounding water kg/m3. This velocity limit increases with depth, making cavitation more difficult to
induce. For a water gun, shuttle and water-jet velocity (~60 m/s) are well above the critical velocity for
typical source depths (u, = 17 m/s for water gun at 5 m depth). At depths of 180 m or more, cavitation in
water guns is unlikely to occur. Similarly, the peak amplitude of a water gun is approximately proportional
to the hydrostatic pressure, which means that the output sound level is lower at shallow source depths.
Cavity noise is also expected to decrease as the depth of the water gun increases (Landrg & Amundsen,
2010).

WATER CHAMBER

EXHAUST PORTS

Figure 2.18 Photo (image a) and operation (images b-d) of a S15 water-gun. Compressed air pushes water through the ports,
generating two water jets (image c); low pressure cavities appear inside the nozzle and behind the water jet (image d), which will
eventually collapse producing high intensity pulses (from Sercel, 2006).
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The duration of the water gun signature is much shorter than that of an air gun of comparable size, due
to the absence of an oscillating air bubble. The water gun is richer in high frequency content, with most of
its energy between 0.2 and 2.5 kHz, but it produces lower levels at low frequencies than air guns. Water
guns are a good compromise between very high-resolution systems (3.5 kHz sub-bottom profilers and
sparkers) and deep penetration, air gun arrays (Hutchinson & Detrick, 1984).

0.3 0-PK=2.5b-m o 170 ¢ MAX. AMP. = 155 dB

G2 PK-PK'= 41 b-m - i 320 Hz < - 6 dB line < 2500 Hz
~ & 160
£ a
§ o1 2 [
< 2 150
= O =
(Zg o1l g 140
E = 130
o 02 0-2000 Hz / 24 dB <

<
-0.3 120
0 10 20 30 40 0 500 1000 1500 2000 2500
TIME (MS) FREQUENCY (Hz)

Figure 2.19 Far field signature (left) and spectrum (right) of a single S15 water gun, operated at 2000 psi and 0.22 m depth (from
Sercel, 2006).

The advantage of a source that expels water instead of air is that there is no oscillation of an air bubble,
and the need for an array of sources of different volumes disappears (Tasker & Weir, 1998).

2.5.1 Tables

Table 2.4 Sounds produced by water guns

Source SL Signal Description Reference
(Model) [dB re iPa@Im]  Characteristics
Water gun
single 238 dBpypk T=4s Broadband 0 Hz - 2 kHz Bouyoucos, 1981
(Hydroshock)
Water gun )

vaterg 217 dBy N/A Vg = 55 in’ Richardson et al,
single 1995
Water gun 228 dB, FR 0.27-2 kH O 2000 psi

single Pk oas = B.elne iz P pressure ps Sercel, 2006

232.3 Bk T=10ms z,=022m

(S75)
Water gun 245 B /A Ve = 1465 i} Richardson et al,
array o 9 " 1995

2.6 The Sleeve Exploder

The sleeve exploder is a marine seismic source developed by Exxon Production Research Co. and put in
service for oil exploration in 1967 (Bayhi et al, 1969). The system consists of twelve to twenty four rubber
sleeves, each of them fitted to a gas mixing chamber. A mixture of oxygen and propane is fed into the
chambers and ignited by a spark, producing an explosion which is contained within the rubber sleeve (see
Figure 2.20). The expansion of the sleeve generates a shock wave. The gasses are evacuated through a
tube to the surface as the initial explosion collapses and the sleeve retracts, thus eliminating the chance of
a bubble pulse (Trabant, 1984).

The source is capable of continuous operations at high repetition activation rates, typically at 6 — 10
seconds intervals. The system can be mounted in a towed sled or suspended from davits on the side of
the seismic vessel and is usually operated in shallow waters. The major drawbacks of this source are the
size, weight and use of explosive gasses.

The development work on the sleeve exploder began with the objective of lowering marine seismic
costs, and improving safety and data quality. At the time the research on this source started there were
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only a few non-dynamite seismic sources, but when the system was made available at least twelve seismic
sources suitable for deep water oil exploration were already on the market. A scaled down version of the
original design, the mini-sleeve exploder, became popular in the following years for high resolution
geophysical (HRG) surveys, in particular for sub-bottom hazard assessment previous to offshore drilling
operations (Trabant, 1984). Nowadays, sub-bottom profiling systems based on small air guns or air gun
arrays, boomers, sparkers and fixed-frequency or chirp sonar have replaced the rest of HRG systems,
including the mini-sleeve exploder.

FUEL MIXER BLOCK

Figure 2.20 Schematic drawing of a mini-sleeve exploder system and operation (from Trabant, 1984).

2.6.1 Tables

Table 2.5 Sounds produced by sleeve exploders and open-bottom gas guns

Source Measurement SL Signal Regression Equation  Description Reference
(Model) [dB re 1uPa] [dB re 1uPa@1m] Characteristics
Sleeve T=6s
lod 1530 150.5 dBys @ 8 km o0 e me st ‘ | z-6m Creene &
exploder 116 dBye @ 27 km A s T= ms m RL = 200.1 -10logyor - 1.39-10°r 7= 9m Richardson, 1988
12 gun array T =400 ms @ 29 km
Sleeve f Richardson et al
Ignition of gas mixture Icharason et al,
exploder N/A N/A 217 dBims N/A N/A in rubber sleeve 1995
single
Open bottom ,
as qun o1 177 dBms @ 0.9 km 199.2 dB, Main energy at 72 Hz RL = 199.2 10l 53310 2=8m Greene &
935 9 123 dBys @ 14.8 km o« Bms T = 200 ms @ 0.9 km = 1992 -10logor= 233707 | 2= Richardson, 1988
array

31



Review on Existing Data on Underwater Sounds Produced by the Oil and Gas Industry

32



Review on Existing Data on Underwater Sounds Produced by the Oil and Gas Industry

3 Engineering Sources

3.1 The Single-Beam Echo Sounder

Echo sounders are a type of sonar device used to measure the water depth remotely by emitting a series
of acoustic pulses. Single-beam is the simplest type of echo sounder, and perhaps the most widely used
man-made sonar (Ainslie, 2010).

Single-beam echo sounders project a single acoustic beam, oriented vertically downwards. The time
the emitted pulse takes to travel down to the seafloor and return is used to estimate the water depth (h,, =
ct/2, where h,, is the water depth, t the total travel time and ¢ the sound speed averaged in the vertical
direction). SBES typically use a single transducer to emit and receive the acoustic pulse. The first pulse
return provides information of the water depth immediately below the surveying vessel, whereas late
returns tell about surrounding depths covered by the acoustic beam. The footprint of the acoustic beam
on the seabed varies in size depending on water depth and is generally large, with typical beam widths of
10-30°. A narrow beam width is preferable to obtain the best resolution; this is especially important for
deep water sounding. A single-beam provides depth information at a single point, usually just below the
vessel, by measuring the shortest slant range to the seafloor within the main beam. The echo sounder
emits acoustic pulses repeatedly as the vessel moves, producing a continuous depth profile along its track.

Echo sounders are not always calibrated, but often give a good estimate of the depth and type of
seabed (Blondel, 2009). For precise applications, the speed of sound must be measured, typically by
deploying a sound velocity or CTD probe. The sound speed is difficult to obtain accurately, and is the main
source of error when estimating the water depth; knowing the exact position of the transducer is also
important.

A typical source level value in SBES is 214 dB re TuPamms. The SBES emits a short tonal pulse, with a
duration ranging from a fraction of millisecond to several milliseconds (0.1 — 10 ms), and frequencies
ranging from 12 to 200 kHz. The pulse may consist of a single frequency, multiple frequencies or a
frequency sweep (chirp). Emitted sound levels depend on pulse duration and beam width: the highest
levels are usually related to narrow beams (high directivity) and short pulses (same energy in a shorter
signal results in higher RMS sound levels) (Ainslie, 2010). High frequencies (100 — 200 kHz) are suitable for
in-shore measurements, but deeper waters require lower frequencies (12 — 40 kHz), which experience lower
absorption in water.

Dual frequency echo sounders transmit two discrete frequencies simultaneously: low (~24 kHz) and
high (~ 200 kHz). This system was originally designed to provide accurate navigation in shallow waters,
while still giving reliable depths in deep waters. Other advantage of dual frequency echo-sounding is the
ability distinguish layers of unconsolidated sediments on top of consolidated sediments and rocks.

The density of depth measurements depends on vessel speed and pulse repetition period, but is
constrained by the beam width of the transducer. The higher number of pulses per second would result in
higher survey efficiency, as the vessel can travel faster and cover a larger area in a shorter time, but more
pulses will also create more noise, which will affect the quality of the received signal.

Single-beam echo sounders have long been the tool of choice to map the seabed topography
(Blondel, 2009). SBES are installed in a wide range of marine vehicles, from pleasure boats to research
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vessels and tankers, and are generally used for navigation and bottom avoidance, and for the generation
of navigational charts. However, SBES can also be used to derive more information about the local habitat,
bottom classification (sediment, rock, vegetation, etc.), fish finding and target localisation. Upward looking
systems, such as Pressure Inverted Echo Sounders (PIES), can be used for average sound speed
measurements, tide estimation and ice avoidance. Echo sounders used for fish finding are adapted by
tilting the transducer away from the vertical direction; scanning at oblique angles increases the area of
coverage (Ainslie, 2010).

Figure 3.1 Family of Simrad single-beam echo sounder transducers (www.km.kongsberg.com).

3.1.1 Tables

Table 3.1 Sounds produced by single-beam echo sounders

Source SL Signal Reference
(Model) (dB re TuPa@1m] Characteristics
SBES 223 - 231 B f =12 -200 kHz Cluster Maritime
(General) e =006 -16 ms Francais, 2014
=12 kHz
SBES 235 dByms DC=04% André et al, 2009
T=20ms
f =38 kHz
BW g5 = 0.38, 3.8 kHz
SBES 208 dB T =03,13ms Ainslie, 2010;
(Simrad 38/200) " f = 200 kHz www.simrad.com

BW 648 = 2, 20 kHz
T =0.06,0.2, 0.6 ms

SBES
(Simrad HTL 430D) 200 dByms f = 42 kHz Ainslie, 2010
SBES o
(Simrad EK 500) 214 dBms f =57 kHz Ainslie, 2010
SBES o
(Simrad SD 570) 220 dByms f =57 kHz Ainslie, 2010
SBES -

221 dByms f =208 kHz Ainslie, 2010

(Biosonics DT 4000 )

3.2 The Multi-Beam Echo Sounder

Multi-beam echo sounders measure water depth remotely, as single-beam echo sounders do, but instead
of a single vertical beam, they use multiple beams aimed at the seafloor in different directions. MBES apply
beamforming to distinguish between pulse seabed reflections arriving from multiple vertical angles. This
approach provides a depth measurement along a broad corridor in the cross-track direction, rather than
a single depth value below the vessel. As a result, a moving vessel will produce a swath of water depth
information. Multi-beam bathymetric mapping became more accessible in the late 1980s, recent compared
to the use of single-beam echo sounding, which started in the early 20" century.

MBES are equipped with an array of identical, equally spaced transducers, which allow for the
transmission of several acoustic beams. The width of the swath, which extends along both sides of the
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vessel, covers a distance that is about 4 times the water depth, and up to 20 times in some cases (Blondel,
2009). The beams are designed to be narrower than in an SBES, and accuracy of the depth measurement
can be better than one metre.

The main parameters describing a multi-beam echo sounder are the operating frequency and
bandwidth, pulse length, beam width and number of beams. Systems with 0.5° along-track beam widths
are now quite common; cross-track beam widths are extremely broad in comparison, with values around
120 to 140°. Modern systems produce up to 400 soundings or depth measurements per pulse for a single
head or transducer array, compared to the 100 soundings of older generations. Pulse lengths and operating
frequencies are similar to those in single-beam echo sounders, although some systems can use frequencies
up to 700 kHz. Many of the current systems allow for frequency selection.

Higher resolution is achieved with narrower beam widths, higher frequencies and reduced pulse
lengths. To overcome the range limitations at high frequencies produced by the sound absorption in sea
water, chirp (frequency sweep) pulses are introduced as an alternative to pings (continuous tone) to
increase the energy in the pulse. As the MBES technology has progressed, smaller beam widths have come
with an increase in the number of beams, to maintain the cross-track coverage or swath width. Some
systems also include dual-swath transmission to provide simultaneous pulses from two transducer arrays,
which doubles the density of collected soundings and allows for greater survey speeds.

Advances in beam forming offer greater control over the distribution of the acoustic beams. The
possibilities of beam forming include: reducing or extending the swath coverage while maintaining the
number of beams; steering the swath to one side; or compensating for vessel motion, to ensure good
quality mapping regardless of sea state. Much of the advances achieved in MBES are related to signal
processing and bottom detection algorithms. The processing and calibration methods for bathymetry
mapping are well standardised (Blondel, 2009).

MBES are principally aimed at acquiring bathymetry measurements, but backscatter strengths
(Blondel, 2009) and water column data can also be derived. Backscatter information can be used for the
classification of seabed sediments and habitats. Overall, multi-beam echo sounders have better horizontal
and vertical resolution than SBES, but lose efficiency at depths below 30 m.

Figure 3.2 Multi-beam echo sounder EM 2040C (left) and bow mounting detail (right). From www.km.kongsberg.com
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3.2.1 Tables

Table 3.2 Sounds produced by multi-beam echo sounders

Source SL Signal Description Reference
(Model) [dBreluPa@im]  Characteristics
T =20 ms (typ.)
T=1s
MBES ;
v 237 dBs f =15.5 kHz Application: depth sounder EES, ZOOSt' | 2005
(Hydrosweep ) BW = 40 Hz (t=25 ms) to remser et al,
1kHz (t=1ms)
T=3.8ms (typ.)
T=5s
MBES ;
p d 245 dB s f =18 kHz Application: depth sounder EES' 2002' | 2005
(Parasound) BW = 40 Hz (t=25 ms) to remser et al,
5.5 kHz (t=180 ps )
Application: shallow water
MBES T=2ms bathymetry mapping Hildebrand, 2009;
EM710 232 dBims” f=70-100 kHz *Far field measurement extrapolated | Hammerstad, 2005;
¢ ) Beam width 0.5° x 140° to 1m using TL = 20logr. Actual Genesis, 2011
measured level at 0.3 mis 213 dB, s
Application: deep water
MBES T=10ms bathymetry mapping Hildebrand, 2009;
EM122 245 dBims f=10.5-13 kHz *Far field measurement extrapolated | Hammerstad, 2005;
( ) Beam width 0.5° x 120° to 1m using TL = 20log-r. Actual Genesis, 2011
measured level at 2.8 m is 208 dB, .
Application: bathymetry mapping
MBES 225 dB..° 1=02072ms °Far field measurement extrapolated | Hammerstad, 2005;
(EM1002) me f=95kHz to 1 musing TL = 20logor. Actual Genesis, 2011
measured level at 3.2 m is 210 dB, s
MBES 220 - 240 dBy. f=13-700 kHz N/A C\usterA Maritime
T=02-20ms Francais, 2014
MBES o
(Simrad EM120) 245 dByms f=12kHz N/A Ainslie, 2010
MBES o
(Simrad EMI214) 238 dBims f =12 kHz N/A Ainslie, 2010
MBES .
(ELAC Sea Bearn 2000) 234 dBys f =12 kHz N/A Ainslie, 2010
MBES o
(ELAC Sea Beam 3012) | 23° ®Bms f=12 kHz N/A Ainslie, 2010
MBES
(Thomson Marconi 235 dBys f =12 kHz N/A Ainslie, 2010
TSM 5265 )
MBES o
(Simrad EM12) 238 dBys f=13 kHz N/A Ainslie, 2010
MBES o
(ELAC Sea Beam 2120) | 247 %Bms f= 20 kHz N/A Ainslie, 2010
MBES o
(Simrad EM300) 241 dBs f=30kHz N/A Ainslie, 2010
MBES o
(ELAC Sea Beam 1050) | 234 9B f= 50 khiz /A Ainslie, 2010
MBES o
(Simrad EM710) 232 dBims f = 85 kHz N/A Ainslie, 2010
MBES o
(Simrad EM1000) 225 dByms f =95 kHz N/A Ainslie, 2010
MBES .
(Simrad EM1002) 226 dBys f =95 kHz N/A Ainslie, 2010
MBES o
(Simrad EM950) 225 dBys f =95 kHz N/A Ainslie, 2010
MBES o
(Simrad EM952) 226 dByps f =95 kHz N/A Ainslie, 2010
MBES o
(Atlas Fansweep 20) 227 dByms f =100, 200 kHz N/A Ainslie, 2010
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Table 3.2 Sounds produced by multi-beam echo sounders (cont.)

Source SL Signal Description Reference
(Model) [dB re uPa@1m] Characteristics

MBES

(Thomson Marconi 210 dBrms f =100 kHz N/A Ainslie, 2010
TSM 5260)

MBES 219 dByms f =17, 234 kHz N/A Ainslie, 2010
(Triton ISIST00)

MBES 217 dBms f =180 kHz N/A Ainslie, 2010
(ELAC Sea Beam 1185)

MBES 220 dBms f =180 kHz N/A Ainslie, 2010
(ELAC Sea Beam 1180)

MBES 227 dBms f =200 kHz N/A Ainslie, 2010
(Atlas Fansweep 15)

MBES 220 dBs f =200 kHz N/A Ainslie, 2010
(Reson Seabat 7125)

MBES 210 dBrms f =200 kHz N/A Ainslie, 2010
(Reson Seabat 8124)

M_BES 218 dBrms f =200 kHz N/A Ainslie, 2010
(Simrad EM2000))

MBES 225 dBms f =200 kHz N/A Ainslie, 2010
(ECHOSCAN)

MBES 217 dBrms f =240 kHz N/A Ainslie, 2010
(Reson Seabat 8107)

MBES 215 dBrms f =300 kHz N/A Ainslie, 2010
(Simrad EM3000) ;

MBES 210 dByms f = 455 kHz N/A Ainslie, 2010
(Reson Seabat 90017 )

3.3 The Side-Scan Sonar

The side-scan sonar (SSS) is a device that uses sonar technology to generate a high-resolution image of
the seafloor. This instrument projects an acoustic beam towards the seabed and on each side. The beam
is narrow in the along-track direction and broad in the vertical plane. The SSS emits a tone burst or ping
that travels to the seafloor, where the energy is scattered. Some of this energy returns to the transducer,
and is then amplified and processed to image the seafloor along a narrow slice perpendicular to the travel
direction. The slices from successive pings are combined to create a long, detailed continuous image of
the seafloor.

Figure 3.3 Operation of a towed side-scan sonar (from www.tritech.co.uk)

The image is the result of the scattering properties of the seabed, and these depend on the material,
dimensions and roughness (shape) of the mapped sediment and protruding objects. Like an imperfect
surface that is illuminated with a torch from an oblique angle, large objects in the seabed will appear as
light areas (strong reflections), with relatively long shadows behind them. Materials with a very different
density than water will reflect more sound: metal, rock, gravel and air are strong acoustic reflectors,
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compared to fine sediments, which do not reflect sound so well. The incident angle has an important effect
on the resulting image, potentially hiding strong reflectors, and depends on the proximity of the device to
the seabed and its cross-track beam width.

Side-scan sonars are often towed from a surface vessel (towfish), but can be hull-mounted for shallow
water operations or also be installed in AUVs. The SSS consists of three components: transducer (towfish),
transmission cable and on-board processing and display unit. Most side-scan sonars cannot provide depth
information, so are typically used in conjunction with a single or a multi-beam echo sounder.

Modern side-scan sonar systems may use pings (tone burst) or chirps (frequency sweep), with
frequencies from 6.5 kHz to 1 MHz, and resolutions in the range of 0.01-60 m (Blondel, 2009). The cross-
track coverage or swath width is given by the maximum range of the system, which depends on the
frequency and energy of the pulse. The cross-track resolution is given by the pulse length, and the along-
track resolution by the beam width (Hansen, 2011).

The altitude of the towfish is governed by the range of the system and the bathymetry, and is typically
10-20 % of the maximum range. The acoustic beams are projected towards the seafloor in an oblique
angle, creating a shadow under the towfish. The altitude affects the width of this shadow, but also plays an
important role on the formation of shades, which are key for interpreting the sonar image and identifying
targets of interest.

The side-scan sonar is commonly used to locate and assess pipelines and cables, find objects such as
shipwrecks or mines, detect obstructions that may be problematic for shipping or engineering work, or
determine seabed characteristics from scattering data.

Figure 3.4 Dual frequency side-scan sonar system (left, from www.km.kongsberg.com) and high-resolution image from a Klein
System 5900 SSS (from kleinmarinesystems.com).

3.3.1 Tables

Table 3.3 Sounds produced by side-scan sonars

Source SL Signal Description Reference
(Model) [dB re uPa@1m] Characteristics
SSs T=05-20s ICES, 2005;
230 dB Application: bathymet i ey

(Fugro SY509) m f=9,10 kHz ppiication: bathymety mapping I ¢ 1o, 2008

f = 114, 410 kHz

BW =15 khz Application: seabed mapping
555 220 - 226 dBms? T2 20ms Dual Frequency Konsberg, 2014b
(Konsberg 796D) s T =88, 167 s o

a = . .
Bear width 50° x 1° @ 114 kHz Rlms = 167.2 - 15810goR

Beam width 40° x 0.3° @ 410 kHz

SSS 220 dByne f =100 - 900 kHz N/A Clusrer. Maritime
T=01-1s Francais, 2014
SSS —
233 dBms f =12 kHz N/A Ainslie, 2010

(Racal SeaMARC SB12)
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Table 3.3 Sounds produced by side-scan sonars (cont.)

Source SL Signal Description Reference
(Model) [dB re TpPa@1m] Characteristics
SSS 228 dBms f =333, 36 kHz
. N/A Ainslie, 2010
(Simrad AMS 36/120S1) 224 dByms f =120 kHz
5SS 224 dB, f =120 kH N/A Ainslie, 2010
(Simrad AMS 1205P ) e B i nele
555 200 dB, f =50 kH N/A Ainslie, 2010
(Racal SeaMARC SB50) ms s nele
555 227 dB, f=57.6kH N/A Ainslie, 2010
(Simrad AMS 60S/) ms = oloknz inslie,
558 . 227 dBims f =59 kHz N/A Ainslie, 2010
(Neptune 990 Tow Fish )
SSS -
231 dBms f =60 kHz N/A Ainslie, 2010
(Ultra Deepscan 60 )
5SS 223 dBims f =97 kHz N/A Ainslie, 2010
(Massa TR-1107)
SSS -
220 dByms f =100 kHz N/A Ainslie, 2010
(Innomar SES2000)
SSS 228 dBms f =100 kHz |
X N/A Ainslie, 2010
(Neptune 422 Tow Fish ) 220 dByms f = 500 kHz
SSS -
. 220 dBms f =100, 300 kHz N/A Ainslie, 2010
(GEC Marconi Bathyscan )
234 dBmZ £ = 105 kHz aDual beam r:odel
5SS 229 dByms main beam, ” secondary beam
X Ainslie, 2010
(Neptune 272 Tow Fish ) 229 dBrms f =105 kHz
Dual frequency model
223 dBms f = 500 kHz
555 223 dB, f =114, 410 kH N/A Ainslie, 2010
(Geoacoustics DSSS) me o ‘ i
5SS 224 dB, f =200 kH N/A Ainslie, 2010
(Benthos C3D) e B ‘ nste:
SSS o
208 dByms f = 325, 675 kHz N/A Ainslie, 2010

(Tritech Seaking )

3.4 The Sub-Bottom Profiler

A sub-bottom profiler (SBP) is a single-channel system used for shallow reflection seismic profiling. These
geophysical exploration systems are based on the principles of vertical seismic reflection, and emit a low-
frequency, regularly pulsed signal capable to penetrate the seafloor down to several tens of metres. The
partial reflections produced at sub-surface layers of different acoustic impedance return to the surface,
where they are captured by the receiver, amplified and processed to generate a stratigraphic image or
seismic reflection profile (Ramsay, 2017; Saucier, 1970)

The first device designed specifically for sub-bottom profiling was the Sonoprobe, built by Magnolia
Petroleum Co. The Sonoprobe was made operational in 1954, but almost a decade before, modified echo
sounders were used to image the top layers of the seafloor in shallow coastal waters. In the 1970s hundreds
of sub-bottom profiling systems were available and used throughout the world, and replaced seismic
reflection operations that were so popular until the mid-1960s (Saucier, 1970).

Sub-bottom profilers consist of an acoustic source, one or more receivers and a signal processing
system. Acoustic profiling systems are commonly classified according to the mechanism of sound
generation: piezoelectric and magnetoestrictive (pinger, chirp, parametric SBP), electromechanical
(boomer), electrical (sparker), pressurised chamber (air gun, water gun) and combustion (gas gun, sleeve
gun). Ceramic sources, such as pingers and chirps, use the same transducer or transducer array for emission
and reception; in boomers and sparkers, a separate hydrophone array is used to receive the reflected
signal.
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The selection of the source and processing system depends on the required seabed penetration,
resolution and acquisition geometry. The resolution determines the ability of a system to discriminate
between closely separated layers of sediment; layers with a lower thickness than the system resolution are
perceived as one layer. The degree of resolution and penetration largely depends on the frequency content
and energy of the generated acoustic signal. Higher resolution can be achieved with narrower beams,
shorter distance to the seafloor and signal processing. Regardless of the sound source, both high resolution
and penetration cannot be achieved, and a compromise must be found. Increased output power allows
greater sub-bottom penetration, but it will result in multiple reflections and noisier data in a hard seabed.
Higher frequencies allow for higher resolution, because of their short wavelengths, but are easily
attenuated and result in lower seabed penetration. Longer pulse lengths yield increased energy, which
favours penetration, but affect resolution. The relation between frequency and penetration is not linear,
and below 800 Hz penetration increases dramatically (www.ozcoasts.gov.au; www.comm-tec.com).

Most commercial SBPs are small, low-powered, high-resolution and shallow-penetrating systems,
used for detailed studies of stratigraphy; mid-size systems are generally installed in research vessels
operated by oceanographic institutions, are characterised by moderate penetration and resolution, and
are widely used for geological and geophysical studies in the continental shelf (Saucier, 1970). The available
sub-bottom profiling systems are more than a commercial response from manufacturers: although these
systems share some characteristics, each has its own features which make it more suitable for a particular
application. SBPs are used in offshore, coastal and port engineering, geotechnical site surveys, dredging
studies, mineral exploration, detection of buried structures and habitat mapping (Ramsay, 2017). Thickness
and characteristics of sedimentary layers can be derived from these studies.

The following sub-sections describe the operation, signal characteristics and application of the main
high and mid resolution seismic profiling systems: pinger, chirp, parametric SBP, boomer and sparker. The
last two are included for comparison; for a detailed description and tabulated information of sparkers and
boomers refer to Sections 2.2 and 2.3. Air guns are sub-bottom profilers, but as deep-penetration, non-
compact multichannel systems, will not be included in this section (see Section 2.1 for details on air guns).

3.4.1 High Resolution SBP

High resolution acoustic profilers, also referred to as tuned-frequency profilers, produce a highly consistent,
repeatable tonal signal. The frequencies used are between 1 and 30 kHz. These profilers have an improved
resolution compared to lower frequency systems, but can only penetrate down to 30-50 m into the seabed.
The same transducer is typically used for both transmitting and receiving the acoustic signal. There are
three main types of high resolution profilers: the pinger, the chirper and the parametric sub-bottom profiler.
These devices are hull mounted or towed underwater. The use of ceramic transducers allow for high
resolutions with low output power.

A pinger (not to be confused with the single frequency, acoustic deterrent device) is similar to a single-
beam echo sounder, but uses a lower frequency. This device emits a tone burst, with an operating
frequency between 3.5 and 7 kHz and typical pulse durations between 0.1 and 16 ms. It offers a vertical
resolution of 0.2 m, with penetrations of 10-50 m. The generated source levels are between 180 and 210
dBims. Today, many systems have the option to select the frequency and pulse duration. A pinger consists
of a transceiver and a transducer. The transceiver (or separated transmitter and receiver/processing units)
contains the power supply, storage capacitors, discharge circuitry, and amplification/processing for the
received signal. The transducer in most pingers consists of an array of ADP crystals immersed in oil (Saucier,
1970). The use of magnetostrictive transducers, like the ones in the Sonoprobe, is very infrequent.
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Figure 3.5 Pinger sub-bottom profiling system (from knudseneng.com)

The chirp sub-bottom profiler emits a short frequency sweep, which covers a range of frequencies
somewhere between 2 and 30 kHz. Chirps are designed to replace pingers and boomers, since they can
achieve higher vertical resolutions (~0.1 m) while maintaining penetration (5 - 50 m). Compared to pingers,
the pulse duration is around ten times higher, with typical values between 1 to 100 ms. Ringing noise is
reduced and resolution improved due to the lower peak input power fed into the transducer. These systems
provide relatively artefact-free seismic reflection profiles. As with pingers, the chirp system is made up of
two main components: the transceiver and the transducer; the first one contains the signal generator,
power circuitry, and the recording/control/processing unit.

Figure 3.6 Chirp sub-bottom profiling system 3100, with towfish SB-216S and SB-424 (left) and deployment detail (right). From
www.edgetech.com.

A parametric sub-bottom profiler transmits two high frequencies that interact with each other during
propagation, producing a lower frequency with higher penetration capability. Parametric profilers are non-
linear systems (Ramsay, 2017). The emitted frequencies are typically in the range of 2-20 kHz. These systems
achieve resolutions similar to chirps (0.1 m), with a slightly lower penetration (5 — 30 m).

3.4.2 Low/Mid Resolution SBP

Low/mid resolution profilers produce a broadband signal with most of its energy below 1kHz, for relatively
deep sub-bottom penetration. None of these devices use ceramic transducers, so they all require a
separate towed hydrophone array to receive the signal. Low/mid resolution acoustic profilers include
sparkers, boomers, bubble pulsers, air guns, water guns and sleeve exploders. The most common single
channel low/mid systems (sparkers and boomers) are described below (see Sections 2.2 and 2.3 for a more
detailed description and tabulated data).

The boomer is an electro-mechanical source, which generates a short, broadband signal by
transmitting an electrical impulse into a coil that is physically attached to a moving diaphragm and
magnetically coupled to a metallic plate. The acoustic pulse extends from 0.3 to 6 kHz, and can penetrate
down to 150 m into a clayey seabed (20 m for coarse grain sediments), with resolutions between 0.2 and
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0.5 m. Source levels are in the range of 205-225 dBms, and the pulse duration is of the order of a fraction
of millisecond (0.1-0.2 ms). The pulse is not as repeatable as the one generated by ceramic transducers. A
boomer sub-bottom profiling system consists of a transducer (boomer plate), an energy source, a
detection/processing unit and a hydrophone array. The boomer is generally installed in a small catamaran
and can be operated from a small vessel. Other popular terms used to refer to an electro-mechanical
source like the boomer are pulser, snapper and thumper. A bubble pulser shares the same principle of
operation as the boomer, but has a lower dominant frequency and considerable longer pulse length,
leading to deeper penetration but lower resolution (Saucier, 1970).

The sparker transmits a broadband, high-intensity, low-frequency signal by the generation of an
electrical arc between its two electrodes. The acoustic signal is rather long (0.5-5 ms) and contains two
major pulses: one associated to the formation of a steam bubble caused by the electrical discharge; and
the other, an order of magnitude greater than the first one, resulting from the collapse of the bubble
(Saucier, 1970). Sparkers cover a range of frequencies of 0.2-3 kHz, and yield better penetration (30-750
m) but poorer resolution (0.3-1 m) than boomers. Changing the voltage or the amount of stored energy
will result in different acoustic signatures and relative amplitudes between the two main pulses, providing
different results in terms of penetration and resolution. Like boomers, a sparker system consists of a
transducer (electrode), an energy source, a detection/processing unit and a hydrophone array. Sparkers
are normally used in regions of semi-consolidated sediments and compacted sands. Some sparkers
incorporate a parabolic panel to create a downward-focused plane wave, which would experience little
attenuation with distance.

3.4.3 Tables

Table 3.4 Sounds produced by single-frequency sub-bottom profilers or pingers

Source SL Regression Equation Signal Description Reference

(Model) [dB re TuPa@1m] Characteristics

RLo. = 1672 - 15.8-oqur Area: Camden Bay, Beaufort Sea

Pinger SBP s &7 122700 T =200 ms 7, =15m

(Strata Box) 167.2 dBrms 90" percentile regression equation,
range of validity 100 m to 1.5 km.

f=35kHz z, = 1 m above seafloor Ireland et al, 2009

Application: sub-bottom profiling
Area: Chukchi Sea,

Pinger SBP 186.4 08 RL‘TS - 1894 ) 21'14,0%“ ) T =300 ms 25 = 1.5 m, towed from side Ireland et al. 2009
(ORE140) - rms 90 percentl}\e} regression equation, f=35kHz hy ~ 45 m eland et al,,
range of validity 200 m to 1 km.

Application: sub-bottom profiling

Area: Camden Bay, Beaufort Sea,
RLims = 193.8 - 29.7-logor, hy ~ 35 m

193.8 dBrns 90" percentile regression equation, Ireland et al., 2009

range of validity 200 m to 1.5 km. %= _3 m .
Application: sub-bottom profiling
Pinger SBP T=15ms Area: Chukchi Sea
) RLims = 175.2 - 19.8l0gur, f=35kHz hy ~ 45 m
Geopulse, Towfish 136A me
(Geop f ) 175.2 dBms 90" percentile regression equation, z;=3m Ireland et al., 2009
range of validity 200 m to 1.5 km. z, = 1 m above seafloor
Application: sub-bottom profiling
214 B N/A f = 2-12 kHz (selectable) T135 ¢ J Konsberg, 2014a;
s T =1,2,4816 or 32 cycles fansducer Ainslie, 2010
Pinger SBP 212 B A f=75-12.5 kHz N/A Ainslie. 2010
inslie,
(Ultra Deepscan 60) e (selectable)
Pinger SBP insli
(Massa TR-1067A ) 199 dBims /A f=5kHz N/A Ainslie, 2010
Pinger SBP -
201 dBms N/A f=4kHz N/A Ainslie, 2010

(Massa TR-T061A)
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Table 3.5 Sounds produced by frequency-modulated sub-bottom profilers or chirpers

Source SL Regression Equation Signal Description Reference
(Model) (dB re TuPa@1m] Characteristics
Chirp SBP 203 - 214 B, N/A T =50ms Anplication: sub-bott - Cluster Maritime
(General) ms f=18-6kHz ppiication: sub-bottom protling | - g2 ais, 2014
Area: Beaufort Sea,
RLims = 184.6 - 24.3-logior hy~ 50 m
Chirp SBP 184.6 dBims Rlpk = 189.2 - 19.5-logr T=025-5s Z=1m Patterson et al.
© 189.2 dBy RLg = 171 - 24.1logior T=5-120ms z, = 3 m above seafloor 2007 '
171 dBe 50" percentile regression equation, f = 2-7 kHz, 8-23 kHz Endfire (bow+stern)
range of validity 55 - 450 m. Application: sub-bottom profiling
(shallow penetration)
s Area: Prudhoe Bay, Beaufort Sea.
RlLims = 161.1 - 16.7-logioR -3.2410°r, hoo
Chirp SBP e . W =22m
CAPBO00 Chiro I 1611 dByns 907 percentile regression equation, f=2-7kHz z,~15m Funk et al.,, 2008
( irp Il em}ifl}re direction (bow+stern), range of Application: sub-bottom profiling
validity 40 m to 5 km. .
(shallow penetration)
T2025s
Chirp SBP 230 dB N/A T=04-100 ms Application: sub-bottom profiling Hildebrand, 2009;
(SBP120) me FR = 2.5 - 7 kHz (sweep) (medium penetration) Konsberg, 2005
Beam width 3° x 35°
Chirp SBP
p . . 205 dBms N/A f = 3-7 kHz (selectable) N/A Ainslie, 2010
(Geoacoustics Geochirp)

Table 3.6 Sounds produced by bubble pulser sub-bottom profilers

Source
(Model)

SL
[dB re TuPa@1m]

Regression Equation

Signal
Characteristics

Description

Reference

AL 1657 - 1474 Area: Beaufort Sea
ms = - = 14.7-10gr
hy~50m
Bubble Pulser SBP 13;; js’ms Etpk :11‘728'71; ;4‘.7'\ogwor T : 2'5{22 ‘ 7, = 3 m above seafloor Patterson et al.,
(=) 142vdB P 5' B o IOQWO_r :__ 2004 ms Endfire (bow+stern) 2007
t %0 percem'.‘e. regression equation, N ‘ Application: sub-bottom profiling
range of validity 35 m to 2.5 km. .
(medium penetration)
RLyms = 174.3 - 16.8-logyor -1.8-10°7r, 2 ~15m
Bubble Pulser SBP th . c
174.3 dB, 90" percentile regression equation, Application: sub-bottom profilin, Funk et al., 2008
(SPR1200 Bubble Pulser) e endfire direction (bow+stern), range of | f =400 Hz PP . . P 9
(medium penetration)
validity 50 m to 11 km.
Area: Camden Bay, Beaufort Sea
hy~35m
Bubble Pulser SBP 68 dB RL“;“ - 176_'8 ) 17'6"_09‘0" ) T=1s z,=05m Ireland et al, 2009
(SPR1200 Bubble Pulser) R ms 90" percentile regression equation, f = 400 Hz 2, = 1m above seafloor reland et al,
range of validity 100 m to 1.5 km. L .
Application: sub-bottom profiling
(medium penetration)
Area: Chukchi Sea
hy~ 45 m
Bubble Pulser SBP 1649 B RL(hms - 164'9 B 12'2"_0910“ T =500 ms z; = 1.5 m, towed from side reland et al. 2009
(BP530 Bubble Pulser) oo 0 percem'.‘e. regression equation, f =400 Hz z, = 1 m above seafloor reland etal,
range of validity 100 m to 1.5 km o -
Application: sub-bottom profiling
(medium penetration)

3.5 Acoustic Deterrents

Underwater acoustic devices have been used since the early 1980s in an attempt to resolve interactions
between marine mammals and fishery. There are two main interactions causing conflict: marine mammal
entanglement in nets and marine mammal predation in longline fishing and aquaculture areas (Petras,
2003). The most commonly used acoustic deterrents are the Acoustic Deterrent Devices (ADD) and Acoustic
Harassment Devices (AHD). Less common solutions include pipe banging, seal bombs, firecrackers and
predator sounds. During offshore industrial activities, for example pile driving during wind farm
construction, ADDs may be recommended as an additional mitigation measure (www.dosits.com). In some
fisheries, the use of ADDs has become mandatory to reduce bycatch of small cetaceans (Petras, 2003).

In general, ADDs target cetaceans, in particular harbour porpoises, whose foraging habits make them
more likely to be entangled in gill nets; AHDs target pinnipeds, a common predator in aquaculture farms
(Petras, 2003; Morton & Symonds, 2002). An ADD is essentially a low-powered version of an AHD. Source
levels produced by an ADD are in the range of 130 to 150 dBms; in an AHD these are between 180 and 200
dBims.
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Figure 3.7 AHD Airmar dB Plus Il (left, from airmartechnology.com) and ADD AQUAmark 100 (right, Aquatec Group Ltd.)

ADDs are also known as pingers (not to be confused with single frequency sub-bottom profilers) because
original standard models used single frequency pulses, of typically 10 kHz. Some manufacturers offer
models which cover a different frequency range to target a particular species, such as the Whale, Porpoise
and Dolphin Pinger from Future Oceans, with operating frequencies of 3, 10 and 70 kHz, respectively
(www.futureoceans.com). Most AHDs are designed to increase the intensity of the emitted signal over one
minute, to condition the flee response and alert non-target species (Petras, 2003).

ADDs and AHDs work in a similar way, and share many characteristics. Pulse durations are generally
in the order of tens of milliseconds to several hundreds of milliseconds (50 — 2000 ms, 300 ms being a
typical value). There is a large variety of signals that different models can produce: some devices generate
trains of short pulses, whilst others emit longer, separated pulses, or more continuous noise (Gotz & Janik,
2013). The signal emitted by these devices can be considerably complex, and may include frequency
modulated tones (downward/upward chirps), multiple continuous tones and broadband noise, which can
be combined or switched in a randomised pattern (Petras, 2003; Lepper, 2014). Figure 3.8 shows the
spectrogram of the signal generated by an acoustic deterrent manufactured by Terecos (Lepper et al.,
2014). Today, many models of ADDs produce very complex, randomised signals, covering frequencies from
3 to 160 kHz. Sometimes, establishing a delimiting line between ADDs and AHDs is difficult.

ressure Level (dB re 1.Pa)

Sound

Sz2q.0 (16 me) Seq. 2 (8ms)

Figure 3.8 Spectrogram from Programme 4 of an AHD Terecos DSMS-4 (from Lepper et al., 2014).

Even though there are hundreds of acoustic deterrents in the market, very little is known about the way
they work. More research is needed to understand the factors that trigger the aversive response and cause
habituation of the marine mammal after prolonged exposure. There are two assumptions about how
acoustic deterrents may work: 1) by producing a high enough sound level that exceeds the auditory pain
threshold, or 2) by an acoustic stimulus that causes aversion but not pain (Gétz & Janik, 2013).
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Figure 3.9 Transducer (left) and control unit (right) of an of an AHD Terecos DSMS-4 (from Lepper et al., 2014).

The effectiveness of acoustic deterrents has been proved to vary considerably between studies, and to
decrease over time. Reasons for differences in reported effectiveness include the deployment method, the
presence of prey, reactions of different species, and sound propagation characteristics. Reasons for loss of
effectiveness over time include habituation, “dinner bell” effect, adaptation (e.g. swimming with the head
above the surface) and hearing damage due to sound exposure (Gotz & Janik, 2013; Petras, 2003).

The variation in behavioural responses across studies and sites are the result of a series of poorly
understood factors. Avoidance to sound in phocid seals is influenced by food motivation, learning
processes, type of sound and auditory response. Seals habituate rapidly to sounds for received levels of
146 dBms and in presence of food; however, without food, deterrence occurs at received levels as low as
135 dBims (GOtz & Janik, 2013; Gotz & Janik, 2010). In general, ADDs have been proven ineffective in
deterring seals and sea lions. AHDs seem to be only effective on unexposed animals (Petras, 2003).

The main problems associated with acoustic deterrents are the lack of long-term effectiveness and
noise pollution, with a potential long-term effect on target and non-target species (Gotz & Janik, 2013).
AHDs produce sound levels high enough to cause hearing damage to marine mammals at close range
(Hildebrand, 2005); hearing damage due to long cumulative exposure is also feasible (Gotz & Janik, 2013).

In order to increase the efficiency of acoustic deterrents and minimise their impact on marine
mammals, a series of design and operational tips are recommended: transmit a variety of waveforms and
time intervals, account for the hearing ability of different species of marine mammals, use short signals and
low duty cycles and reduce the energy above 5 kHz if odontocetes are present.

3.5.1 Tables

Table 3.7 Sounds produced by acoustic deterrent devices

Source SL Signal Reference
(Model)) [dBre uPa@Im]  Characteristics
ADD -

120 - 140 dB,ps T=03s Roussel, 2002
(General) Main energy at 12 - 17 kHz
ADD 1=02-03s
(General) 150 dBs FRo = 5 - 160 kHz Hildebrand, 2009

Beam width 90° x 360°

ADD 132 - 155 dB FR = 5 - 180 kH Cluster Maritime
(General) e N ‘ Francais, 2014

Signal type: frequency modulated
waveform, highly random

ADD T=4402s(DC=8%
(Aquatec 132 + 4 dB s =03 io.m(s s ) Aquatec, 2014,
IACMST, 2006

AquaMark300') f =10 £2 kHz

Application: reduce bycatch on

harbour porpoise

Signal type: frequency modulated

waveform
ADD T=4-305(DC = 0.5-8 %)
(Aquatec 145 dByy 1=02-03s Aquatec, 2014
AquaMark100) FR = 20-160 kHz

Application: reduce bycatch on
harbour porpoise
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Table 3.7 Sounds produced by acoustic deterrent devices (cont.)

Source SL Signal Reference
(Model) [dBre 1Pa@Im] Characteristics
Signal type: frequency modulated
waveform, highly random
-4 - 02-89
ADD T=4-30s (D =0.2-8 %)
(Aquatec 150 dB TS00503s Aquatec, 2014
4 Pk FR = 5-160 kHz quatec,
AquaMarkz10) Application: reduce bycatch (most
porpoises and dolphins) and
depredation
Application: reduce bycatch on
ADD harbour porpoise
(Airmar Gillnet 132 dBys f =10 kHz Airmar, 2011
Pinger) T=4s
T=03s
Application: reduce bycatch on
> 145 dBye porpoise and dolphin
f = 50-120 kHz (outside the hearing
frequency range of seals)
ADD — )
Fishtek B Application: reduce bycatch on Fishtek
( _IS €k banana > 135 dByms porpoise and dolphin (www.fishtekmarine.com
Pinger) f =10 kHz (+ harmonics)
Application: reduce bycatch on
> 135 dBs whales
f = 3-4 kHz (+ harmonics)
ADD prpwhgat;nk:Hrec(i:ce lk))ycatch -
. . =10 Z (tona arexi
(MarEX\ Acoustic 132 4 dBims T=41+02s (www.marexi.com)
Pinger V2.2) T=03+00155s
ADD Application: reduce humpback
. . e Future Oceans
(Future Oceans 135 +4 dBps whale interactions with fishing gears
i (futureoceans.com)
Whale Pinger) f=3+05kHz
ADD Application: reduce bycatch on
. Future Oceans
(Future Oceans 132 dBys porpoises
in Di (futureoceans.com)
Porpoise Pinger ) f =10 kHz
Application: reduce bycatch on
ADD i
dolphins Future Oceans
(Future Oceans 145 dBs f=70kHz
. (futureoceans.com)
Dolphin Pinger ) T=03ms
T=4s(DC =8 %)

Table 3.8 Sounds produced by acoustic harassment devices

Source SL Signal Reference
(Model) [dB re TuPa@1m] Characteristics
DC = 50 %
AHD T=05-25
G | 185 dBms Main energy at 10 kHz IACMST, 2006
(General) BW = 600 Hz
Omnidirectional
AHD .
(General) ~190 dByms Main energy at ~10 kHz Roussel, 2002
.
AHD T=015-05s .
(General) 205 dB; s FR =8 -30 kHz Hildebrand, 2009
Beam Width 90° x 360°
AHD 178 - 193 B Complex signal structure, varying with | ~Cluster Maritime
(General) ms model Francais, 2014
AHD 195 dB f =10 - 40 kHz Petras, 2003; Morton &
(Airmar, -) me Main energy at 27 kHz Symonds, 2002
Signal type: sequence of ~60 tone
bursts every ~4 s
R Tseq = 2.255, Tseq ~ 45 )
192 +1 dB'Z‘S Tone burst: f = 10 kHz, BW = 0.7 kHz tepper et a:, 582;
AHD 198 dBpic i T=14ms T =40ms([DC~3% epperetal,
(Airmar dB Plus ) 145 dB,s harmonics <100 kHz
®from per. comm. with Airmar
Much lower levels reported, but Gotz & Janik, 2013;
183-198 dB, s measurements or device performance Coram et al, 2014;
206 dByy in doubt MMO, 2018; Lepper et
NOTE: data from various authors al, 2014




Review on Existing Data on Underwater Sounds Produced by the Oil and Gas Industry

Table 3.8 Sounds produced by acoustic harassment devices

Source

(Model)

AHD
(Terecos DSMS-4)

SL
[dB re TuPa@1m]

178 +1 dByms @ 6.8 kHz

Signal
Characteristics

Signal type: combination of 4
programmes (highly random)
Programmes include: up/down
frequency sweeps, randomly timed
multi-tones

?<146 dB,ys for f> 27 kHz, main
energy 2-12 kHz

Reference

Lepper et al, 2014;
Lepper et al, 2004;
Gotz & Janik, 2013;
Coram, 2014; MMO,
2018

Signal type: sequence of 28 multi-tone
pulses, emitted every 5 s
Tseq = 3.3-14 ms

AHD Teeq=55 Lepper et al, 2014;
(Ace Aquatec 193 dByms @ 10 kHz*® DC = 50% Lepper et al, 2004;
Silent Scrammer ) Multi-tones: varying length and Gotz & Janik, 2013

frequency up-sweep (f = 5-20 kHz)

T=33-14ms

? > 165 dByms @ 30 kHz

Coram et al, 2014;

AHD BW_ggg = 11 - 20 kHz MMO, 2018; Ace

(Ace Aquatec US3)

197 dByms @ 17 kHz*

#195 +2 dByms @ 13-18 kHz

Aquatec
(www. aceaguatec. com)

AHD
(Ace Aquatec US2)

189 dByms @ 15.8 kHz?

BW 643 = 11 - 20 kHz
?188 +2 dByms @ 12-19 kHz

Ace Aquatec
(www.aceaquatec.com)

AHD
(Ferranti-Thomson
MK2 Seal Scrammer)

194 dBims

194 dBy @ 27 kHz

Signal type: pulses centred at 5
different frequencies, arranged in 5
randomly chosen preset sequences.
Pulses repeated every 40 ms.
f=28-30kHz

DC ~3% (5.5 scrams/h)

T = 20 ms (pulse)

Transmission duration = 20 s scram
(double scram 40 s)

Lepper et al, 2014;

Gotz & Janik, 2013

AHD
(Ferranti-Thomson
MK2 Seal Scrammer

200 dByms @ 25.6 kHz

Identical signal characteristics to MK2
Seal Scrammer

Lepper et al, 2014; Gotz
& Janik, 2013; Coram et
al, 2014; MMO, 2018

4X)
AHD
(Ferranti-Thomson 194 dB,,s @ 27 kHz f =10 - 40 kHz Lepper et al, 2014
MK3 Seal Scrammer)
f =15 kHz
AHD 191dB D = 25:50% L tal, 2014
. . epper et al,
(Simrad Fishguard) me T=10.5s (pulse) PP
Transmission duration = 6 s
f =15.6 kHz
AHD 193 dBs’ T =02 (pulse) L tal, 2014
r ]
(Lofitech) ms 2189 dB,ms from manufacturer, for eppereta
model Seal Scarer
Signal type: random number of pulses
emitted in blocks. Pulse interval >0.5 s,
AHD block interval 20-60 s. Gotz & Janik, 2013;
(Lofitech 182-193 dBys f =14.9 kHz (tonal + harmonics) Coram et al, 2014;

Universal Scarer)

T = 0.5 s typ. (pulse)
DC = 10-25%
NOTE: data from various authors

MMO, 2018;

AHD

(Ocean Engineering 202 dBy s f=3kHz Lepper et al, 2014
Enterprise DRS-8)

AHD f = 1kHz (central band)

(Genuswave 180 dBrms =025 MMO, 2018
SalmonSafe ) DT = 0.8-1%
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3.6 Underwater Acoustic Communications

Underwater acoustic communications date back to the use of the first manned submarines. The “Gertrude”
or underwater telephone allowed for audio communication using analog modulation with a carrier
frequency of 2-15 kHz. Since then, the increase in the number of underwater operations has contributed
to the development and improvement of data communication between underwater and surface nodes.
The research has expanded from point-to-point links to underwater networks. Underwater acoustic
communication is now a mature field, and many commercial devices are available, along with prototypes
developed in research laboratories (Burrowes & Khan, 2011; Chitre et al, 2008; Stojanovic & Beaujean, 2016).
Sound is the evident option for medium to long range underwater communications, due to the strong
attenuation that affects radio and optical waves. Among the many different applications of underwater
acoustic communications are environmental and oceanographic monitoring, assisted navigation, and
offshore engineering (Sendra et al, 2016).

High bandwidth and long distance transmissions are difficult to achieve in the underwater
environment. The advent of digital communication and signal processing techniques in the 1960s helped
to overcome the difficulties of communications in imperfect channels (Chitre et al., 2008). In recent years,
a significant effort has been put on developing technologies to mitigate the bandwidth, distance and
latency limitations associated with the underwater environment (Sendra et al, 2016).

The underwater acoustic modem is the main device used for long distance underwater
communications and consists of a power unit, a processing unit, electronic circuitry and a cylindrical or
spherical piezoelectric transducer, generally used for both signal transmission and reception. The modem
is usually cylindrical in shape, with diameters of 5-10 cm and lengths of 10-50 cm. The power consumption
depends on the range and modulation, and is of the order of 0.1-1 W in receive mode, and 10-100 W in
continuous transmission mode (Stojanovic & Beaujean, 2016).

Figure 3.10 Acoustic mini modem Evologics S2C M, without case (left) and fully enclosed (right). From www.evologics.de

Commercial modems are available from several manufacturers, including Teledyne, LinkQuest, Evologics
and Devologics. The performance of a modem changes dramatically depending on the application, and
factors to take into account when selecting a model include data rate, maximum communication range,
water depth, communication plane (vertical vs horizontal), power and networking capability. For
transmissions below 10 km, data rates exceed 5 kbps, and transmission frequencies are between 10-40 kHz.
There is an inverse relation between data rate and range, and for frequencies in the 100 kHz region
transmission ranges do not exceed a few hundred meters, while frequencies below 1 kHz will allow for
transmissions of several tens of kilometres. Modems designed for vertical transmission in deep waters use
directional transducers and provide higher data rates; omni-directional, low data rate modems are
preferable for shallow waters.
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High data rate underwater communications are challenging due to the bandwidth limitation caused
by strong high frequency absorption, multipath propagation, severe fading (shallow water), shadow zones

(deep water), and relatively low propagation speed which results in large Doppler shifts.

Modulation methods originally developed for radio communications can be used in the underwater
channel. Frequency-Shift Keying (FSK) was the first modulation method used in underwater acoustic
modems. FSK relies on simple energy (non-coherent) detection, which makes it very sensitive to multi-path
propagation, so FSK is better suited to vertical transmission. Motivated by these limitations, other
modulation methods such as Phase-Shift Keying (PSK) and Quadrature-Amplitude Modulation (QAM) were
studied to provide higher data rates. PSK and QAM are coherent modulations, and need to apply sound
propagation algorithms to compensate for the effect of multipath reflections. Incoherent modulation
methods are still in use in certain applications, since they require simple algorithms and processors, and
thus lower power consumption. (Stojanovic & Beaujean, 2016; Chitre et al., 2008).

Table 3.9 Basic specifications of some commercial acoustic modems (from Stojanovic & Beaujean, 2016)

Teledyne Benthos ATM-916-MF1
WHOI Micromodem

Linkquest UWM 1000

Evologics S2C R 48/78

Sercel MATS 3G 34 kHz

L3 Oceania GPM-300

Tritech Micron Data Modem
FAU Hermes

3.6.1 Tables

Max. Bit Rate [bps]

15360
5400
7000
31200
24600
1000

87768

Table 3.10 Sounds produced by acoustic modems

FR [kHZ]
6000 16-21
3000 22.5-27.5
1200 27-45
2000 48-78
5000 30-39
45000 N/A
500 20-28
180 262-375

Source SL Signal Description Reference
(Model) [dB re lwPa@Im]  Characteristics
f= 892 kHz (20-27 and 55- | ™= 1O kM
. = 8- -27 and 55-
Acoustic Modem 185 dB 65 kiz alt ‘ ives) a Application: acoustic communication in Hydro International,
7 alternatives;
(Aquatec AQUAmodem ) e Bearm width: helmis herical difficult environment (reverberant shallow 2007
’ P waters and under-ice communications)
Acoustic Modem 91 B f = 48-78 kHz ;”ax‘,: i km ’ cation ind Hydro International,
n: mmun nin
(Evologics S2C M 7/17H ) me Beam width: hemispherical pplicatio acou§ - co. unicationin deep - 5007
sea, AUV, tsunami warning, etc.
Acoustic Modem 194 6B f =18-34 kHz Imax = 3.5 km Hydro International,
(Evologics S2C M 18/34) m Beam width: horiz. omni Application: AUV, hydrography, etc. 2007
. x = 2 ki .
Acoustic Modem 194 dB f = 48-78 kHz ;“a icat m high o dat vid Hydro International,
ication:
vologics eam width: horiz. Omni .|gn '9h speed data and video 2007
Evologics S2C M 48/78 m B dth: horiz. O PP
transmission, AUV, hydrography, etc.
. «=N/A di transd
Acoustic Modem f =10-14, 25-35 kHz fa ’ _/ (depending on transducer) Hydro International,
. 185 dBms o X Application: data exchange between 2
(ELAC Nautik UM30) Beam width: omni ) 2007
computers using 2 x UM30
) fmax = 3 km .
Acoustic Modem 188 dB f =19-36 kHz Application: real-time recovery data from Hydro International,
(Sonardyne uCOMM Omni MF) s Beam width: 240° PP ' v 2007
sensors (pressure, temperature, current, etc)
Acoustic Modem 193 dB f =19-36 kHz max = 5 km Hydro International,
(Sonardyne uCOMM Dir MF ) " Beam width: +50° Application: N/A 2007
Acoustic Modem 196 dB f = 14-22 kHz max = 7 km Hydro International,
(Sonardyne uCOMM Dir LMF ) m Beam width: +25° Application: N/A 2007
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3.7 Underwater Acoustic Positioning

Underwater acoustic positioning is a method used to determine the location of a submerged object by
means of the relative time delay of one or more acoustic impulses, as they travel between the tracked
object and one or more transceivers or transponders. Underwater acoustic positioning systems were
developed in the 1950s and 60s, and have greatly evolved since then, motivated by the demand for deep
water exploration from the offshore industry. Depending on the positioning technology, these systems can
locate an object with an accuracy that varies between centimetres and tens of metres, within a radius of
metres to kilometres. These positioning methods are accurate and repeatable, but generally require time
consuming calibration, determination of coordinates for the transponders and measurements of sound
velocity profiles (Tomczak, 2011).

Underwater acoustic positioning is essential in almost all phases of offshore operations in the oil and
gas industry. Applications include tracking of vehicles and towed sensors, locating underwater structures,
and monitoring drilling and dredging operations. There are three main types of methodologies for
underwater acoustic positioning: long baseline (LBL), short baseline (SBL) and ultra-short baseline (USBL).
These methodologies are described below.

Long baseline (LBL) systems use a network of baseline transponders placed on the seafloor, around
the perimeter of a work site within which the target (e.g. vehicle, diver) operates. The LBL technique yields
high positioning accuracy, which is depth independent and is typically between 2-50 cm, depending on
the frequency of the transmitted pulse. LBL provides better accuracy than SBL or USBL systems, and is
primarily used in precision survey work. A typical LBL system consists of one transceiver and three or more
transponders. The transceiver is mounted on the target and the transponders are installed on the seafloor
at accurately determined positions. The transceiver in the target emits an acoustic pulse; the baseline
transponders ping back as they detect the pulse from the transceiver. The two-way travel time of the pulse
from the transceiver to each of the transponders and the sound speed measurement are used to calculate
the distance transceiver-transponders. The target position is then obtained by a method called trilateration,
which determines the unique point where all transceiver-transponder paths intersect. The information is
transmitted to the surface via an umbilical connected to the target. LBL systems provide the maximum
position accuracy independent of water depth, which is preserved over a wide area, but the calibration and
configuration process can be relatively time consuming (Hillier, 2010).

‘_ i LBE Positioning System : I EBL Positioning System

Figure 3.11 Long Baseline positioning system applied to an ROV and a diver. In the left image, A is the interrogator, B-E the
baseline transponders and F the ROV umbilical; in the image on the right, A is the interrogator, B-D the baseline transponders
and E the diver's positioning terminal (from www.deserstar.com)

Ultra-short baseline (USBL) systems use a compact transducer array, typically installed on the hull of a
surface vessel, to determine the distance and angle to the target. The USBL technique is only applicable
for shallow water or low-accuracy, deep water positioning because positioning accuracy rapidly decreases
with depth. The typical positioning accuracy for USBL is 0.2-1 % of slant range (Tomczak, 2011). The USBL
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system consists of a ship-mounted transceiver, made up of several transducers with a separation of half a
wavelength (~10 cm), and a transponder, installed in the target (e.g. diver, towfish, ROV). The transceiver
emits an acoustic pulse that is detected by the transponder in the target, which responds with a return
pulse. The two-way time delay and the relative phase difference of the pulse received at each transducer
in the transceiver are used to calculate the range and angle to the target, respectively. Attitude and heading
sensors are included to maintain position accuracy. In inverted configurations (i{USBL) the transceiver is
mounted in an AUV and the transponder on the target, and are useful for automatic docking and target
tracking. USBL systems provide limited accuracy, but are easy to install and set up, only one transceiver is
required to track all targets, and can be used in small boats or buoys (Hillier, 2010).

Short baseline (SBL) systems use three or more transceivers installed on the hull of a surface vessel,
and as LBL systems, determine the position of the transponder in the target by trilateration. The position
accuracy improves with transceiver spacing, and when operated from larger vessels or a dock the SBL
system can achieve position accuracy similar to that of LBL systems. Transceiver spacings range from 10 to
50 m. One of the transceivers sends out an acoustic signal; the transponder responds with its own acoustic
pulse, which is received by the baseline transceivers, so the time delay from each of them to the
transponder can be used to calculate the target position. An SBL system needs inertial motion sensors to
compensate for the roll, pitch and yaw movements.

o~

£7 ~
(*SBL Positioning Syste

Figure 3.12 Configuration of hull-mounted Short Baseline (left, from www.desertstar.com) and Ultra-Short Baseline (right)
positioning systems. In the left image, A,C,D are the surface transceivers and B the transponder mounted on the tracked object.

3.7.1 Tables

Table 3.11 Sounds produced by underwater positioning devices

Source SL Signal Description Reference
(Model) [dBire/THRa@im] Characteristics
USBL/LBL Transponder Fmax = 3. km o
f = 19-34kHz Application: navigation reference
and Modem 187-196 dB, s (4 levels) ) : Sonardyne, 2016
Beam width: omni transponder, autonomous data logger,
(Sonardyne Compatt 6 8300-3111) and multi-purpose modem
USBL/LBL Transponder fmax=3km o
f = 19-34kHz Application: navigation reference
and Modem 190-202 dB,ms (4 levels) ) . Sonardyne, 2016
Beam width: directional transponder, autonomous data logger,
(Sonardyne Compatt 6 8300-3113) and multi-purpose modem
USBL/LBL Transponder Fmax = 5. km -
f = 19-34kHz Application: navigation reference
and Modem 190-202 dB;ms (4 levels) T Sonardyne, 2016
Beam width: directional transponder, autonomous data logger,
(Sonardyne Compatt 6 8300-5213) .
and multi-purpose modem
=500 m
Transponder Zmax
p 184-187 dBims f = 35-50 kHz Application: tracking through external Sonardyne, 2013
(Sonardyne Coastal Transponder ) . - )
interrogation, installed in small targets
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Table 3.11 Sounds produced by underwater positioning devices (cont.)

Source SL Signal Description Reference
(Model) [dB re TuPa@1m] Characteristics
Zmax = 6 km
Application: dynamic position reference
f = 10-12.5 kHz (Rx), for surface vessels, AUV, underwater
BL Transponder 186 dBrms” :
L vmsb 13-15.75 kHz (Tx) structure works, riser angle, LBL Konsberg, 2003
(Konsberg MPT163) 198 dBrms Beamn width: +30°,+60° transponder, etc
for +60° beam width
®for £30° beam width
Zmax = 1km
Multifunction Positioning Application: SSBL and LBL
Transponder ?for £90° beam width
(Konsberg MPT31x Series ) ®for +45° beam width
188 dByns’ f = 21-24.5 kHz (Rx), for +30° beam width
195 dByms” 27-31.5 kHz (Tx) — Konsberg, 2003
o o 192 dBc€ Beam width: +30°,£45°,£90° | Zmex = Tkm
Multifunction Paositioning Application: SSBL
Transponder for £90° beam width
(Konsberg SPT31x Series ) Pfor +45° beam width
“for +30° beam width
. . - Zmax = 1km
.Il\-/IuItlfunczon Positioning Application: SSBL and LBL
;anzpoan;_i? Seri ?for +90° beam width
(Konsberg X Sertes ) 195 dByms” f=21-24.5 kHz (Rx), bfor +15° beam width
206 dB...° 27-31.5 kHz (Tx) e Konsberg, 2003
. . L . o one Zmax = Tkm
Multifunction Positioning e Beam width: £15°,+90 e
T der Application: SSBL
):ansbponsprsg Seri ?for +90° beam width
(Konsberg x Series) Pfor +15° beam width

3.8 The Acoustic Release

An acoustic release is an oceanographic device used for sea bottom deployment and recovery of
underwater instrumentation. The device comprises a hydrophone, housing for battery, mechanic elements
and electronics, and a release hook. In the deployment, the acoustic release and payload are attached to
an anchor weight that remains on the seafloor and a float that keeps the deployed unit upright. The
assembly remains underwater until an acoustic command is used to trigger the recovery. Acoustic releases
have low power consumption and are typically designed for long-term operation (1-2 years). These support
large payloads (up to 20 tonnes) and are especially useful in deep waters, where the instrumentation could
not be easily recovered.

Figure 3.13 Acoustic release transponder P-DORT (from www.sonardyne.com).

The deployed package (release, payload, anchor and float) can remain underwater from minutes to several
years, while the attached subsea device operates. Upon reception and verification of the specific trigger
signal emitted from the control station (e.g. vessel) the acoustic release detaches from the anchor weight,
and the package is raised to the surface by the floating unit. The release mechanism can be of three types:
high-torque motor, for heavy payloads; fusible link, fast but only for small payloads; and electrolytic erosion,
similar payloads to fusible links but slower release.

Acoustic releases are generally passive devices, but many models currently include both reception
and transmission capabilities and incorporate features of positioning transponders and acoustic modems.
The transmission function allows for accurate positioning and confirmation of release actuation.
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\\
.

Operation

Retrieval

Figure 3.14 Deployment, operation and retrieval phases of an acoustic release package (from www.desertstar.com).

3.8.1 Tables

Table 3.12 Sounds produced by acoustic releases

Source SL Signal Description Reference
(Model) [dB re TuPa@1m] Characteristics
Zmax = 500 m
Acoustic Release 185 dB f = 35-50 kH Shallow water lightweight release Sonard 2003
=35- 4 onardyne,
(Sonardyne 7986 LRT) e transponder Y
Release type: screw-off
Acoustic Release 186 dB, f =19-36 kH. ZDmax . tkm | t d S d 2003
=19- 4 eep water release transponder. onardyne,
Sonardyne 7409 ORT m
(Sonardyne ) Release type: spring assisted hook
Acoustic Release Zmax = 6 km
< q 7710 DORT 190 dBms f=7.5-15 kHz Very deep water release transponder Sonardyne, 2003
(Sonardyne ) Release type: spring assisted hook
Acoustic Release f/m“ 27 km o relonce ;
W, Irr ran nader
(Sonardyne 8048 Heavy Load 190 dByms® f = 7.5-15 kHz ely deep water reiease transponde Sonardyne, 2007
PORT Release type: spring assisted hook
) “with alkaline battery, 184 dB,ps with lithium
T=1s
. =300
Acoustic Release — T=20ms izz:ustic re|2;se Sub Sea Sonics,
(Sub Sea Sonics ARGO E) oo f = 33-39 kHz (Rx), o 2012
38.4 kHz (1) Release type: electrolytic erosion
4 kHz (Tx
T=1s
. =25 ki ignal),
Acoustic Release 1815 B ;O ms (;‘évt?or? :35:‘3;13 ) Acoustic release interrogator used with Sub Sea Sonics,
. .5 dBrms
(Sub Sea Sonics ARI60) £ - 35.7-42 kHz (Rx), the AR60 E 2012
33-35.7 kHz (Tx)
Acoustic Release Zmax = 500 m
(Teledyne Benthos 875-TD) 167 dByms f=9-14 kHz Imax < 3 km (slant range) Teledyne, 2016
Y Release type: high torque motor
. =2k
Acoustic Release “max m
Teled Benthos R2K 185 dBims f =9-14 kHz Imax < 10 km (slant range) Teledyne, 2016
(Teledyne Benthos ) Release type: high torque motor
. =12 ki
Acoustic Release “max "
185 dBims f =9-14 kHz Imax < 12 km (slant range) Teledyne, 2016

(Teledyne Benthos R12K')

Release type: high torque motor

T = order of ms

Acoustic Release .
N 185-190 dByps f = 7.5-50 kHz N/A ggg:e\ etal,
(General) Omnidirectional beam

Acoustic Release <192 B f = 7-15 kHz A Boebel et al.,
(General) - ok Omnidirectional beam 2005
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3.9 The Acoustic Doppler Current Profiler

The Acoustic Doppler Current Profiler (ADCP) measures the speed, direction and depth in the water column
of currents in the ocean using the principle of Doppler shift. The Doppler effect explains the change in
frequency of the sound due to the relative speed between the source and the receiver.

The ADCP works by transmitting a tone burst or ping into the water. The small particles carried by
the moving water (e.g. zooplankton, bubbles and suspended sediments) partially reflect the energy of the
pulse as it travels through the water. Particles moving away from the acoustic beam return a signal of lower
frequency; a higher frequency signal is received when the particles move towards the beam. This change
in pitch or Doppler shift can be used to remotely measure the absolute speed and direction of currents at
constant distance intervals, which is called a current profile; the intensity of the received signal gives an
indication of the abundance of suspended particles. ADCPs can capture four types of measurements
simultaneously: current profile, spatial distribution of suspended particles, ADCP speed over ground, and
distance to seabed or surface.

Figure 3.15 NOAA (left, from oceanservice.noaa.gov) and WHOI (right, from www.coml.org) Acoustic Doppler Current Profilers.
Combination of vertically and horizontally oriented ADCPs for accurate measurements of currents through a waterway (centre,
from oceanservice.noaa.gov).

These devices can be placed on the seafloor, or installed in the hull of a vessel or in a buoy. ADCPs can be
oriented horizontally, upwards or downwards. Moored ADCPs contain a power supply, a processing unit,
internal memory (data logger), and the transducer array; vessel-mounted ADCPs typically use an external
on-board computer and GPS, to subtract the vessel movement from the water current data. ADCPs are
usually equipped with three or four transducers pointing at different angles, to measure a three-
dimensional current velocity profile.

The pulse frequency limits the maximum range of the current profile: higher frequencies yield more
precise data, but lower frequencies travel further. The frequency of the acoustic pulse ranges from 100 kHz
to 2 MHz, with covered ranges between 25-2000 m. If the water is relatively particle-free (e.g. clear waters
in the tropics), the pulse may not produce reliable data.

3.9.1 Tables

Table 3.13 Sounds produced by acoustic doppler current profilers.

Source Measurement SL Signal Description Reference
(Model) [dB re 1uPa] [dB re TuPa@1m] Characteristics
f=384kHz
180 dByys @ 182 m T=37ms
180 dByns @ 22 m 227 dBims T>25s(typ.39)
FR 345 = 37.2-39.6 kHz
Ocean f=76.8kHz 4 beams, 30° beam
Observer & 180 dBims @ 139 m™ | o T=24ms angle, phased array Teledyne, 2016;
Ocean 180 dByms @ 12 m° e T>14s(typ.29) “beam axial direction www.teledynemarine.com
Surveyor FRgs = 74.4-79.2 kHz Pbeam 20° off-axis
f = 153.6 kHz
180 dByms @ 109 m? 226 dB T=12ms
180 dByns @ 11 m° m T>07s(typ.19)
FR 348 = 148.8-158.4 kHz
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Table 3.13 Sounds produced by acoustic doppler current profilers (cont.)

Source Measurement  SL Signal Description Reference

(Model) [dB re 1uPa] [dB re TuPa@1m] Characteristics
f=76.8kHz 4 beams, 20°/4° beam
WorkHorse 180 dBys @ 107 m? 23 B T=23ms angle/width, convex Teledyne, 2016;
Long Ranger 180 dB/ms @ 8 m° me T>1s(typ.25) ®beam axial direction www.teledynemarine.com
FR.348 = 67.2-86.4 kHz Pheam 20° off-axis
f =153.6 kHz 4 beams, 20°/4° beam
WorkHorse 180 dByms @ 36 m? 213 B T=1ms angle/width, convex Teledyne, 2016;
QuarterMaster 180 dByms @ 1.4 m° e T>1s(typ. 19) “beam axial direction www.teledynemarine.com
FR3gs = 134.4-172.8 kHz Pheam 20° off-axis
f=307.2 kHz
180 dB;ps @ 40 m? 215 dB T=57ms
b rms >0
180 dB;ms @ 1.8 m T> 015 (typ. 0.75 s)
FR 348 = 268.8-345.6 kHz
f=614.4 kHz 4 beams, 20° beam
WorkHaorse @ = 2. angle, convex .
. 180 dB;ms @ 31 m 217 By T=28ms : el e Teledyne, 2016; ‘
Sentinel 180 dByms @ <1 m® T> 015 (typ. 0.559) beam axial direction www.teledynemarine.com
FR 348 = 537.6-691.2 kHz Bheam 20° off-axis
f = 1,229 kHz
180 dB, 18 m? =14
ms @8 914 i, mams
180 dByms @ <Tm T> 015 (typ. 0.55)
FR 348 = 1,075-1,382 kHz

3.10 Overview of Sound Levels and Spectral Coverage

This section presents a summary of some basic acoustic properties for the engineering sources addressed
in this chapter.

Table 3.14 Main acoustic characteristics of different types of underwater engineering source (from Tab. 3.1-3.8 and 3.10-3.12)

SL s Penetration Resolution
[dB re. 1pPa] [m] [m]
SBP (Pinger) 170-210 3.5-12.5 0.1-16 0.125-0.3 10-50 02
SBP (Chirp) 170-230 2-23 1-100 > 0.25 5-50 0.1
SBP (Sparker) 190-220 0.2-3 0.2-5 4-6 30-750 0.3-1
SBP (Boomer) 205-225 0.3-6 0.1-04 0.5-1 20-150 0.2-0.5
SBP (Bubble Pulser) 165-180 04 5-120 0.5-5
Transponder 185-205 13-50 20 1
Acoustic Release (Tx) 170-190 7-50 20 1
Acoustic Modem 185-195 8-80
AHD 180-205 3-40 1-2000 0.04-5
ADD 120-155 3-180 5-300 4-30
SBES 200-235 12-200 0.1-20
MBES 210-245 12-700 0.2-20 5-15
SSS 200-235 50-900 0.09-0.2 0.5-20
ADCP 214-227 35-1200 1-40 0.1-3
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Figure 3.16 Sound level and spectral range of various categories of underwater engineering sources. The markers represent
source levels at the operating frequency of the device (e.g. pinger, bubble pulser) or at the lower and upper frequencies of its
operating band (e.g. chirp, air gun, acoustic modem). Values extracted from Tables Table 3.1-Table 3.8 and Table 3.10-Table 3.13.
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4 Vessels

From among the several types of underwater acoustic sources associated with human activities, vessels are
the main contributor to noise in the oceans, given their large number, wide distribution and mobility
(Richardson et al., 1995). All vessels, from boats to supertankers, produce underwater sound. They share
the same principal mechanisms of sound generation, but differences may exist between vessel types due
to discrepancies in size, design and operation.

The main sources of sound generation in vessels are described in Section 4.1; details about the
acoustic characteristics of different types of vessel are addressed in Sections 4.2-4.5; and a summary of the
characteristics of sound produced by small, medium and large vessels is included in Section 4.6.

4.1 Sound Generation Mechanisms in Vessels

The sound produced by a vessel is a combination of tonal components and broadband energy. The spectral
characteristics and sound levels are related to ship size and speed, but still significant variation may be
found among vessels within the same group. The primary sources of sound in a vessel are the propeller,
the machinery and the water flow. Above 25 knots, sound from propeller cavitation is dominant and tends
to increase with speed, but below 25 knots flow noise prevails (Widjiati et al, 2012). The individual acoustic
sources in a vessel are located in different places. From a certain distance the radiated noise will be
perceived as a combination of these multiple sources, each of them with its own characteristics and
dependence on operational conditions.

Understanding the mechanisms of sound generation is key for the definition of noise control
measures in vessels, but also for the interpretation of noise measurements. In the following subsections,
the acoustic radiation mechanisms of the propeller, machinery and water flow are described.

4.1.1 Propeller

A propeller is a fan-type device that converts rotational motion into thrust by an accelerated water flow,
which results in a force that pushes the ship forward. Propellers typically consist of 3 to 5 blades, with
diameters that range from less than 1 metre for small boats to 10 m for the largest vessels. The diameter is
determinant for the efficiency of a propeller; a larger number of blades result in less efficiency, but provide
more total blade area for the same diameter, also reducing the vibration associated with larger blades.

Propeller noise can be grouped into cavitating and non-cavitating. Non-cavitating noise includes
singing effect associated to the resonance of the blades at their natural frequencies, and pressure pulses
due to inhomogeneities in the fluid pressure.

Cavitating propellers are an important source of acoustic emissions, and the study of propeller
cavitation has become a priority in the general effort made to reduce shipping noise (Firenze & Valdenazzi,
2015). Cavitation occurs when the pressure in the liquid suddenly drops, making the gas in solution evolve
into bubbles. As the propeller rotates, the positive and negative pressures in the face and back of the blade
generate the required thrust. At sufficiently high rotation speeds, cavitation appears in the region of
negative pressure (see Figure 4.1, left). The cavity formed rapidly collapses when the pressure increases as
the blade turns downward. The pressure is lower in the upper section of the propeller, and cavitation
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consequently stronger, due to the nonuniform wake field created by the hull and to the lower hydrostatic
pressure. The collapse of the bubbles produces a shock wave that over time will damage the surface of the
propeller blades (see Figure 4.1, right).

The sound radiated from propeller cavitation is made of tonal and broadband components. Tonal
components are associated with the fundamental blade passing frequency and its harmonics, since every
time a blade passes the bottom high-pressure region the cavitating bubbles implode. The broadband
sound is caused by the chaotic collapse of bubbles of different sizes. The blade rate is the dominant source
of low frequency tones at high speed, when propeller cavitation dominates. For the diesel-powered vessel
Overseas Harriette (Arveson & Vendittis, 2000) cavitation inception occurred at 86 rpm (10 kts), but for an
older ship with a damaged propeller lower inception speeds may be expected. The wideband cavitation
spectrum is characterised by a maximum energy region followed by a constant decay in sound level (for
the Overseas Harriette, the peak is centred at 55 Hz, decreasing afterwards by 3 dB per octave). As the
vessel speed exceeds the cavitation inception speed the overall level increases, but the shape of the
spectrum remains practically the same.

Figure 4.1 Propeller cavitation (left, from Abrahamsen, 2012) and damage produced by cavitation on the propeller blades (right,
from www.wikipedia.org).

There are various types of cavitation according to the position on the propeller where they occur, and
include (see Figure 4.2): tip vortex, hub or Boss vortex, sheet, face, root, propeller-hull vortex, cloud and
bubble cavitation. Except the hub and root cavitation, the rest are generated in the blades. The
particularities of these different types of cavitation are described below.
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Figure 4.2 Main types of propeller cavitation (left, from Abrahamsen, 2012) and detailed schematic representation of the parts
of a propeller and associated cavitation (right, from Casciani-Wood, 2015).
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The tip vortex cavitation is caused by the low pressure vortices that appear at the tips of the propeller
blade, as a result of a pressure difference between the suction and pressure sides of the blade
(Abrahamsen, 2012). The vortices are cylindrical and describe a spiral as the blades move forward (see
Figure 4.1-4.2, left). The strength of these vortices depend on the wake field, and the geometry and loading
on the blade. The collapse of the bubbles occurs at a certain distance from the propeller and produces
broadband sound, with a spectral peak that shifts to lower frequencies as the thrust loading increases.

Blade sheet cavitation occurs when large suction pressures appear near the leading edge, creating a
sheet of bubbles on the back of the blade, where pressures are lowest (see Figure 4.3, left). The chance of
sheet cavitation increases at high tip speeds and is a function of the angle of attack of the blade to the
varying wake field. A propeller is considered fully cavitating when the entire back of the blade is covered
in sheet bubbles (Cascianni-Wood, 2015). The generated sound is broadband in nature and similar to that
from cavitating tip vortices. In propellers with a high or moderate degree of skew (i.e. lateral curvature) in
their blades, vortices will appear along the leading edge, which can interact aggressively with the tip vortex.

Figure 4.3 Sheet bubble cavitation behind the leading edge of the blade, in yellow circle (left, from www.axiompropellers.com).
Leading edge cavitation in a propeller with a moderate degree of skew (right, from www.heliciel.com).

The existence and strength of hub or Boss vortex cavitation depends on the blade’s pitch, and appears
when the angle of incidence of the leading edge of the blade is high compared to the direction of water
flow.

Root cavitation bubbles form on the hub and between blades and appear if the flow down the root
is strong enough. If the root vortices reach the hub vortex they may end up forming a stranded rope, with
as many strands as blades, similar to the tip vortex spirals.

Cloud cavitation occurs close to the collapse area of sheet cavitation, and can be extremely aggressive
(Cascianni-Wood, 2015).

Bubble cavitation forms in the middle region of the blade. This type of cavitation is associated with a
high curvature of the blade and can be eliminated at the design stage (Cascianni-Wood, 2015).

Face cavitation occurs in the driving or exposed face of the blade and is associated with an incorrect
pitch distribution along the blade (Cascianni-Wood, 2015).

The propeller-hull cavitation creates a vortex between the tip of the blade and the vessel’s hull and
tends to occur at slow speed and high load conditions (e.g. vessel accelerating at rest).

The propeller singing is a non-cavitating effect that arises when the trailing edge vortices excite the
natural frequencies of the blades. The result is a distinct tonal sound with frequencies between 100 to 1,000
Hz. The amplitude of these tones varies with the strength of the vortices, affected by the wake field. The
singing effect is generally more intense in damaged propellers. Singing normally ceases when cavitation is
strong, as cavitating bubbles absorb the vibrational energy from the blades (Richardson et al., 1995).
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In summary, sheet and tip vortex cavitation evolve with the blade passing rate, and both contribute
to the tonal part of the radiated sound. As clouds of bubbles associated with the various cavitation
processes collapse, including those from sheet and tip vortex cavitation, broadband sound is produced.
The sound reflected from the hull contributes to make the radiated acoustic pattern even more complex
as it interferes with the direct sound; this interference phenomenon is only significant in the tonal region
of the spectrum (Abrahamsen, 2012).

4.1.2 Machinery

Unlike the sound generated in the propeller, the sound associated to the machinery originates inside the
vessel and is transmitted in the form of vibrations through the hull. The hull is partially submerged in the
water and the machinery extends throughout its length. The acoustic radiation will strongly depend on the
coupling of the machinery with the hull, and on the mechanical characteristics of the supporting structure
and submerged shell plates. Low frequency sound is associated with the vibration of large hull areas
(Abrahamsen, 2012).

The majority of the sound from machinery is produced by two systems: the Ship’s Service Diesel
Generator (SSDG) and the main propulsion engine. Arveson & Vendittis (2000) studied the acoustic
signature of a cargo ship representative of many direct-drive, diesel-powered vessels, the M/V Overseas
Harriette. The SSDG radiated a series of 6 Hz harmonics, stable in amplitude and frequency, which
contributed to almost all the radiated sound at low ship speeds; some harmonics (24 and 30 Hz) were still
important contributors at high speeds (see Figure 4.4). At higher speeds, the tones associated to the “piston
slap” in the propulsion engine dominate; these firing rate tones are not as stable as those produced by the
SSDG due to variations in propeller loading.
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Figure 4.4 Narrowband spectra of M/V Overseas Harriette at low speed (68 rpm) and maximum speed (140 rpm). The harmonics
from blade rate, firing rate and diesel generator are identified by letters B, F and G respectively (from Arveson & Vendittis, 2000)

4.1.3 Water Flow

The hull and any appendices and openings in it will generate turbulence and vortices by its interaction with
the water. Flow noise is caused by these vortices, which extend throughout the hull and may excite some
of its structural natural frequencies (Abrahamsen, 2012).
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4.2 Commercial Vessels and Supertankers

The globalised economy has been accompanied by an increase in the number, size, power and complexity
of commercial ships. The expansion of shipping since the 1960s has contributed to an important increase
in ambient sound levels in the ocean. In the following subsections the types of commercial vessels and
their acoustic characteristics are described.

4.2.1 Types of Vessel

The designs of different ship types are greatly influenced by the cargo they carry. Commercial vessels are
classified into eight main categories according to the type of product they can transport: general cargo,
container, RO-RO, bulk carrier, crude carrier, product carrier, liquified gas carrier and chemical carrier. The
first four types are designed to transport dry cargo, and the last four to transport liquid products.

Figure 4.5 Types of dry cargo vessels, from left to right and top to bottom: general cargo vessel, container vessel, RO-RO vessel
and bulk carrier (from www.tuscorlloyds.com)

General cargo vessels carry cargo in the form of pallets or bags, known as breakbulk, and loose and irregular
cargo. The loading and unloading is usually carried out with cranes installed in the vessel. General cargoes
comprise 4.4 % of the world fleet (UNCTAD, 2015).

Container vessels carry standard rectangular shipping containers, arranged in tiers and stacked on the
deck of the vessel. Standard containers are measured in Twenty-foot Equivalent Units (TEU), are typically 8
feet wide, 8.5 feet high and 1 to 2 TEU long, and can accommodate from food, liquids and electric
equipment to automobiles. Gantry cranes are used as an efficient way of loading and unloading containers,
directly between the vessel and the truck. Container vessels are some of the biggest vessels (e.g. Emma
Maersk, with a capacity of 15,000 TEU) and are mainly used on liner routes; the largest are unable to transit
certain areas and ports due to size and draft. Container vessels did not exist until the 1960s, and currently
they make up 13% of the world fleet (UNCTAD, 2015) and have become the main way of transporting
manufactured products, comprising 52% of the global ocean trade.

Roll-On/Roll-Off vessels (RO-RO) are a type of container ship with a high box shape specialised in the
transport of wheel cargo. The vehicles are loaded and unloaded using ramps. The largest RO-RO vessel is
the Mark V Class, which is 265 m long and provides 138,000 m? of cargo space.
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Bulk carriers are used to efficiently transport loose dry cargo with high weight to cost ratio (e.g. coal).
These large vessels are divided into separate holds covered by hatches, and loaded by spouts, conveyors
or grab cranes; this last method is the norm for unloading bulk cargo. Bulk carriers comprise 43.5% of the
world fleet (UNCTAD, 2015).

Figure 4.6 Types of liquid cargo vessels, from left to right and top to bottom: crude oil tanker, product carrier, liquified gas carrier
and chemical carrier (from www.tuscorlloyds.com)

Oil tankers are designed to transport crude oil to refineries. The Very Large and Ultra Large Crude Carriers
(VLCC, ULCQ), also known as supertankers, can carry 318,000 tons of oil and the largest of them, the Knock
Nevis, was 460 m long. The largest oil tankers are too large to dock at ports and cargo is unloaded at
offshore pumping stations. These vessels make up 28% of the world fleet (UNCTAD, 2015).

Product carriers are a smaller version of crude carriers and are used to transport refined
petrochemicals such as petroleum, diesel, or tar from offshore stations to ports. The smaller carriers are
also used to transport non-petroleum products (e.g. palm oil and molasses).

Liquified gas carriers are specialised vessels designed to transport Liquified Natural or Petroleoum Gas
(LNG, LPG) within large spherical tanks under high pressures. LNG carriers are often larger than LPG carriers;
he largest LNG carriers are the ‘Q-Flex’, 345 m long with a capacity of 266,000 m3. Gas carriers comprise
2.8% of the world fleet (UNCTAD, 2015).

Chemical carriers are similar in size to product tankers but are designed to transport a range of
chemicals. The material used for the cargo tanks, which includes stainless steel and phenolic epoxy coating,
determines the type of cargo. These vessels make up 2.4% of the world fleet (UNCTAD, 2015).

Figure 4.7 Cruise ships Universe Explorer (from www.ssmaritime.com) and Holland America Statendam (from Kipple, 2000).
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Cruise ships are the largest category of passenger vessel, and can be up to 360 m long, 60 m wide and
carry more than 6,000 passengers. These large vessels are fitted with a wide range of facilities including
restaurants, shops, pools, casinos and cinemas.

4.2.2 Acoustic Signature and Spectral Characteristics

Large commercial vessels and supertankers are equipped with powerful engines and low-speed propellers
(80-110 rpm) which result in intense, low-frequency acoustic radiation (Richardson et al., 1995). McKenna
et al. (2012) presented a series of opportunistic measurements on seven types of modern commercial
vessels during normal operation, as they transited the Santa Barbara Channel, off the coast of southern
California. The measurements included container ships, vehicle and bulk carriers, open hatch cargo ships,
and crude oil, chemical and product tankers. The sound levels and spectral response from these different
types of vessel are included in the article and the key conclusions can be summarised in the following
points:
- For container ships the received levels are highest below 100 Hz, and mainly below 40 Hz, but
higher frequency sound is produced at shorter distances from the vessel. A 54,000 GT container
ship generated the highest broadband source level, of 188 dB re TuPa@1m.

- The received levels from bulk carriers are highest near 100 Hz.
- Broadband received levels (20-1000 Hz) are highest for container ships and bulk carriers.

- Forcrude oll, product and chemical tankers most of the energy is below 100 Hz, and mainly below
40 Hz, but unlike container ships and bulk carriers, the energy above 300 Hz is lower.

- Tankers, open hatch cargoes and vehicle carriers have similar broadband received levels.

Measurements presented by Richardson et al. (1995) from two supertankers underway in deep water, the
Mostoles and World Dignity, showed highest sound levels below 10 Hz, particularly near 2 Hz. The
broadband components caused by propeller cavitation were centred at 40-50 Hz for Mostoles and near
100 Hz for World Dignity, which had propellers of diameter 6.3 and 9 m, respectively. If components down
to 2 Hz are included, source levels can exceed 205 dB re TuPa@1m.
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Figure 4.8 Low-frequency source level spectra for two supertankers: A) Mostoles, 103 kT, 266 m long, 12.6 kts; B) World Dignity,
271KkT, 337 mlong, 17.7 kts (from Richardson et al, 1995)

The differences in the acoustic signature of the various types of vessel addressed in McKenna et al. (2012)
may be related to ship load, propeller type, hull design and operation. Except for the chemical tanker with
identifier 355799000, for which the high source level could be attributed to a damaged propeller, the state
of the propeller is unlikely to be a factor of major differences between vessel types. Similar source levels
for bulk carrier and container ships may be explained by the source depth, since a smaller draft (i.e. shorter
distance between the real and image source of the dipole formed at the sea surface) will result in a lower
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radiated sound level (i.e. lower strength of the dipole). In bulk carriers all cargo is stored below deck,
increasing the source depth compared to container ships, where 60% of the cargo is stored on deck
(McKenna et al., 2012). The vehicle carriers were larger and travelled faster than open hatch cargo vessels
and chemical tankers, but produced the lowest source levels among all vessel types; this may be explained
by the shallower draft of vehicle carriers that results from their boxlike shape.
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Figure 4.9 Source level spectra in third-octave bands for four types of commercial vessels: bulk carrier and open hatch cargo ship
(left); container ship and vehicle carrier (right). From McKenna et al, 2012.
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Figure 4.10 Source level spectra in third-octave bands for four cruise ships (right, from Kipple, 2002) and three types of tankers:
oil, chemical and product (left, from McKenna et al, 2012).
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Figure 4.11 On the left, source level spectra in third-octave bands of bulk carrier Overseas Harriette (from Arveson & Vendittis,
2000) and the combined spectral response from five bulk carriers (from McKenna et al.,, 2012). On the right, a composite third-
octave band source level spectrum of a supertanker (from Malme et al., 1989; Richardson et al., 1995).
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In general, sound radiated from commercial vessels is mostly produced by propeller cavitation, which peaks
at 50-150 Hz but can extend up to 10 kHz (McKenna et al., 2012).

An interesting effect that occurs in deep waters and at short distances from the vessel, mainly at high
frequencies and under low sea state conditions, is the Lloyd’s mirror effect. This phenomenon results in a
spatial interference pattern and a spectral comb-filtering effect, caused by the coherent sum of the direct
and surface reflected sound. The position of the nulls in the spatial interference pattern depend on the
frequency, source and receiver depth, and distance between source and receiver. As the receiver
approaches the vessel, it crosses a series of minima and maxima which are frequency dependent; the result
is a spectrogram with a characteristic U-shape pattern (see Figure 4.12).
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Figure 4.12 Received sound levels during 1h passages for three types of commercial vessel: a) container ship (MMSI 1548719000),
b) bulk carrier (MMSI 440223000), c) product tanker (MMSI 319768000). CPA is the closest point of approach. The negative time
represents bow aspect (from McKenna et al., 2012).

4.2.3 Directivity

The horizontal radiation pattern is close to omnidirectional below 300 Hz, where blade rate, SSDG and
engine firing rate predominate. Departures from azimuthal uniformity may be caused by hull natural
resonances (Arveson & Vendittis, 2000). Above 300 Hz propeller cavitation dominates, which results in a
relative sound level reduction of 3-5 dB in the fore and aft directions; this widely observed pattern is caused
by the partial absorption of the stern aspect radiation by the bubble wake and the reduction of the bow
aspect radiation by the presence of the hull (Arveson & Vendittis, 2000). Generally, there is also an
asymmetry in the directivity pattern at low frequencies between bow and stern, with sound levels 5-10 dB
higher in stern than in bow for container ships and tankers (McKenna et al.,, 2012).

Figure 4.13 Directivity pattern from the M/V Overseas Harriette for the blade rate 9.3 Hz tone (left) and 340-360 Hz propeller
cavitation band (from Arveson & Vendittis, 2000)
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4.2.4 Effect of Vessel Speed and Size

McKenna et al. (2012) did not find a clear relationship between ship speed and source level for large
commercial vessels and supertankers. For container ships there is some evidence of increasing radiated
sound with increasing speed (see Figure 4.14). In a previous study from Ross (1976), the proposed formula
to estimate the source level above 100 Hz shows a positive relationship with the size and speed of the
vessel, but this formula may not be accurate for vessels over 30,000 GT. In the comprehensive statistical
analysis done by Simard et al. (2016) on 255 merchant ships measured opportunistically while adhering
closely to the ANSI S12.64-2009 standard, ships speed explained a small percentage of the observed source
level variability. Ships longer than 250 m were the exception, as source levels showed a higher correlation
with speed in that category. The relation with speed was stronger at frequencies below 100 Hz for all ship
categories, and more prominent at all frequencies for larger vessels (> 250 m). In the study, length, breadth
and draught worked as better descriptors, but no ship’s physical parameters could explain a large
percentage of the observed sound level variability. The analytical expressions provided by Simard
accounted for a variability of 30 dB at all frequency bands (1-99™" percentile), which shows how complex
vessels are as acoustic emitters and highlights the difficulty of arriving to an expression to model sound
emissions with only a few simple parameters.
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Figure 4.14 Broadband source level for seven types of commercial vessel as a function of speed. Point size represents the relative
size of the ship, measured in GT (from McKenna et al, 2012).

In contrast to the results from McKenna et al. (2012) and Simard et al. (2016), measurements made by
Arveson & Vendittis (2000) on the bulk cargo ship Overseas Harriette showed a clear increase in overall
sound levels with vessel speed (see Figure 4.15).
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Figure 4.15 Third-octave band spectra measured from bulk cargo ship Overseas Harriette at five speeds: 8, 10, 12, 14 and 16 knots.
The broadband source levels from the lowest to the highest speeds are respectively 178.2 180.1183.7 189.4 and 192.1 dBms. (after
Arveson & Vendittis, 2000).
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4.3 Icebreakers

The icebreaker is a special class of vessel designed to navigate through ice covered waters and make paths
accessible to other ships. The icebreaker accelerates to break the ice, then it often stops and reverses to
prepare for another ram. Strong cavitation sound is generated when the icebreaker accelerates forward
and when it is suddenly stopped by the ice; cavitation normally ceases during reverse. The result is a
fluctuating sound level and spectrum (see Figure 4.16). The sound levels emitted by an icebreaker are
normally higher than those produced by a vessel of the same size and power (Richardson et al., 1995).
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Figure 4.16 Received levels from icebreaker Robert Lemeur for four different third octave bands, recorded during several forward-
reverse periods in a 14 minutes sequence (from Richardson et al., 1995).

The highest sound levels emitted by an icebreaker are caused by propeller cavitation during the little
forward motion that occurs after the ice block is hit. This phase generally lasts about one minute and is
followed by a few minutes of reverse and fast forward motion. The intermittent propeller cavitation that
occurs while reversing direction may produce higher sound levels during the astern phase (5-10 dB)
compared to the forward phase (Richardson et al., 1995). Roth et al. (2013) reported an increase in noise
level of 10-15 dB in the 50 Hz and 100 Hz octave bands during heavy ice conditions (80-90% ice cover)
while propellers were operating astern (full reverse) or in opposing directions (side movement) as compared
to forward propulsion. The sound from ice breaking has little contribution to the overall radiated sound
level (Malme et al.,, 1989). Continuous forward navigation is possible when the ice is thin, but more noise is
produced under these conditions than when the icebreaker is underway in open water.
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Figure 4.17 Received level spectra for the icebreaker Canmar Supplier VII: a) underway in open water, 130 dB broadband; b)
icebreaking, 144 dB broadband (from Richardson et al., 1995).

Icebreakers pushing ice emit sound levels 10-15 dB higher than when the vessel is underway in open
water. For example, for the icebreaker Robert Lemeur the received sound levels in the band of 20-1000 Hz
increased by 12 dB during icebreaking compared to underway (Richardson et al., 1995). Roth et al. (2013)
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reported an increase of 5-15 dB between 50 Hz, and 1 kHz and ~10 dB in broadband sound level, during
ice-breaking in heavy ice conditions (80% ice cover) compared to open water transit (30% ice cover).
Nozzles can significantly reduce the acoustic output of the propellers during icebreaking.

The icebreaker sound spectrum is highly variable over time and is dominated by blade rate tones
below 200 Hz. The strong cavitation generated while pushing ice mainly contributes to frequencies below
1 kHz (see Figure 4.17 and Figure 4.18).
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Figure 4.18 Third-octave spectra of icebreaker Robert Lemeur while pushing on hard ice and icebreaker Canmar Kigoriak while
in transit (after Malme et al., 1989).
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4.4 Small and Medium Size Vessels

Fishing, research and offshore support vessels, ferries and tugs are some of the most common medium
size vessels. Tugs are highly manoeuvrable and powerful vessels used to assist (tow or push) large ships or
barges around ports, or even tow drilling rigs and oil production platforms. Research vessels include the
equipment necessary to collect geophysical, oceanographic, environmental or fisheries data. Ferries are
ships used for the transport of passengers or vehicles on a regular basis between close locations. Fishing
vessels are classified in different groups according to the fishing technique and include seiners, longliners,
gillnetters, crabbers, drifters and trawlers, the last one being one of the most common. Offshore support
vessels provide support services during offshore oil exploration, development, production and
decommissioning and include Anchor Handling Tugs and Tug Supplies (AHT/AHTS), Platform Supply
Vessels (PSV) and barges; these vessels are not very standardised and their specifications can vary
considerably.

Figure 4.19 Tug assisting a cargo ship (left, from www.tuscorlloyds.com) and fishing trawler (right, from www.marineinsight.com)

Medium size, support vessels (50-90 m long) generally use a pair of diesel-powered propellers. These
propellers are typically four-bladed and 3 m in diameter, with lower rotation speeds (~160 rpm) than those
in boats, producing a fundamental tone of 10-11 Hz (Richardson et al., 1995). Supply vessels commonly
have bow thrusters to help manoeuvre, which rotate at high speed and generate a series of harmonics with
a high fundamental tone (~120 Hz). From the analysis on two supply vessels made by Richardson et al.
(1995), it was observed that the first nine harmonics (up to ~1000 Hz) contributed to the broadband level,
and the sound level increased in 11 dB after the thrusters started operating.

The nozzle installed around a propeller assists in restricting the water flow to the propeller tips,
generating more thrust, especially at low speeds. Apart from increasing thrust, improving manoeuvrability
and protecting the propellers, nozzles tend to reduce radiated noise. In an example presented by
Richardson et al. (1995) a supply vessel without nozzles produced higher sound levels than a more powerful
vessel with nozzles.

Medium and small sized vessels produce broadband source levels in the range of 160 to 185 dB; larger
vessels tend to produce higher sound levels. Fishing vessels are generally small, and their acoustic impact
is generally much lower than that of large vessels, however when seasons open for the capture of a specific
species of fish, the large number of fishing vessels in the area will cause an important increase in the
ambient noise levels (Malme et al., 1989).
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4.5 Boats and Hovercrafts

A boat is a small vessel with a wide variety of shapes, sizes and applications, which can be classified as
human-powered, wind-powered (sailboats) and engine-powered (motorboats). Small boats with outboard
engines are common in coastal waters; these engines produce strong, high frequency tones. The tonal
frequencies produced by the outboard engines of somewhat larger boats are lower and their source levels
are of the order of 175 dB re TuPa@1m (Richardson et al, 1995). Kipple & Gabriele (2003) make an exhaustive
analysis of 14 watercrafts 4-20 m long used by the Glacier Bay National Park, in Alaska. The results are
summarised in Table 4.4.
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Figure 4.20 Third-octave spectra of seven open skiffs at low-medium speeds (left) and high speeds (right). After Kipple, 2002.
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Figure 4.21 Third-octave spectra of four cabin cruisers at medium (left) and medium-high speeds (right). After Kipple, 2002.

Hovercrafts create an air cushion under the hull above atmospheric pressure that lifts the craft over the
operating surface. These hybrid vessels can travel over land, water and ice. The most detailed study on the
sounds produced by a hovercraft in water was published by Blackwell & Greene (2005). In this study,
underwater and in-air measurements were made in Prudhoe Bay (Alaska) while a Griffon 2000TD hovercraft
operated at near full power. The Griffon 2000TD is a small hovercraft, 11.9 m long and 4.8 m wide, with a
35 kts top speed at full load. The model consists of a 12-bladed lift fan running at a maximum rotation
speed of 2100 rpm, and a 4-bladed thrust propeller with maximum speed of 1380 rpm (fan-thruster pulley
ratio of 1.52). The lift fan and thrust propeller are both driven by a single Deutz 265 kW diesel engine.

The sources of tonal sound in the hovercraft include the engine, the lift fan and the thrust propeller.
The 2000TD was tested at near full power in four passes; engine, fan and propeller were all above the
water. The sound radiated by the hovercraft covered a broad range of frequencies: the blade rate of the
thrust propeller produced the largest peak at 87 Hz, with four lower level harmonics; the blade rate tone
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of 397 Hz of the lift fan was barely detectable, despite its proximity to water. The broadband sound levels
recorded with the hydrophone at 1 m depth were higher than at 7 m (133 and 131 dB re 1pPa at CPA). The
sound sources in the hovercraft remain in air, reducing the horizontal propagation of sound in water. The
hovercraft was considerably quieter than vessels of similar size.
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Figure 4.22 Hovercraft Griffon 2000TD (left) and spectral density of a 1.5 s sample recorded at 7 m depth (right, from Blackwell
& Greene, 2005)
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4.5.1 Tables
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4.6 Summary of Sound Radiated from Vessels

The design, speed and size affect the acoustic signature of a vessel. Some of the conclusions about acoustic
characteristics of large, medium and small vessels are extracted from Richardson et al. (1995) and Malme
et al. (1989) and summarised in Table 4.5.

Table 4.5 General acoustic characteristics of small, medium and large size vessels

Large Vessels

- Main energy content below 100 Hz,
due to slow-turning engines and
propellers, great power, large hulls
and drafts.

- Low-frequency spectrum dominated
by blade rate

- Propeller cavitation contributes to
frequencies up to 10 kHz.

- Slow speed diesel engines (<250
rpm) are relatively quiet compared to
those used in smaller vessels.

- Large oil tankers and cargo carriers
are the loudest, with source levels
typ. in the range 175-185 dB.

Medium Vessels

- The low-frequency spectrum is
dominated by tones related to blade
rate, and in second place by the
engine firing rate.

Broadband components are
associated to propeller cavitation and
flow noise, which peak at 50-150 Hz
and may extend up to 100 kHz.

Pumps and compressors can also
contribute with high frequency tones.

Source levels from medium-small
vessels are typ. in the range of 165-
175 dB.

Icebreakers produce higher frequency
content and broadband sound levels
than vessels of comparable size, due
to their greater power and increased
propeller cavitation.

Small Vessels

- The spectra in small vessels is
dominated by high frequencies.

- These vessels are equipped with small
propellers that operate at high
speeds.

- Blade rate tones are produced at
relatively high frequencies, and
propeller cavitation dominates in the
0.5-10 kHz region.

- The medium and high speed diesel
engines typically installed in small
vessels are very noisy. The radiated
levels can mask propeller cavitation.

- Source levels in small vessels are
generally < 165 dB.

The mechanisms of sound radiation are common to most vessels. The effects of vessel design and
operation on the radiated sound are summarised in the following points (Richardson et al., 1995):

- Propeller cavitation produces dominant tones at the propeller blade rate and most of the

broadband sound

- Propulsion engines and auxiliary machinery contribute to the overall sound levels

- Radiated noise is related to ship size and operation, and increases with ship speed

- Propellers generate more noise if damaged, operate asynchronously or without nozzles

- Large vessels tend to be noisier than smaller ones

- Fully laden vessels underway are noisier than unladen vessels

200 200
A. Boats —— —— B. Ships
= ] 34 mDiesel 7.3 m Outdr, 1
(|IS it —-—
ﬂi 1804 Trawler 5 m Zodiac 1804
o
w
2 160 180
T
> —_—
3 Supertanker
8 140, 1401 ——
s icebreaker
= 1 Peak level in supertanker —
spectrum is near 2 Hz. Tug/Barge
10 100 1,000 10,000 10 100 1,000 10,000
Frequency (Hz) Frequency (Hz)

Figure 4.23 Third-octave source level spectra of various types of boats (left) and large vessels (right). From Richardson et al., 1995.
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5 Exploration, Development,
Production & Decommissioning

5.1 Dredging

Dredging is a process common in coastal waters that consists of removing sediment from a sea, estuary,
river of lake and transporting it to a new location to be deposited. Dredging can be classified in three main
categories: 1) navigation dredging, which includes capital or maintenance dredging; 2) remedial dredging
to handle contaminated sediments; 3) mining and marine aggregate extraction for commercial purposes
and construction (Reine et al,, 2014). Capital dredging takes place in undredged areas to create new
channels, basins, harbours, berths, or to deepen or widen existing facilities; maintenance dredging aims at
maintaining navigable existing waterways, harbours and channels that have become too shallow due to
sedimentation. Navigation, remedial and mining dredging are possibly the most common applications, but
dredging is actually undertaken for a wider variety of reasons, which include (CEDA, 2011; Thomsen et al.,
2009; Todd et al., 2015; Richardson et al., 1995):

- Alter areas of the seabed to make them optimal for the construction of ports, waterways and
other marine infrastructure (capital dredging)

- Maintain the navigability of shipping lanes
- Reclamation of new land, constructed with marine aggregate extracted from another location
- Flood prevention by increasing the channel depth

- Beach nourishment, which consists of the extraction of sand offshore to replace the sand in a
beach that has been eroded by natural processes or human action, with the purpose of
maintaining the recreational and protective function of the beach

- Extraction of sand and gravel that will be used as raw material for construction, mainly in concrete.

- Seabed mining, for recovery of valuable metals

- Environmental remediation of contaminated sediments, affected by chemical spills, sewage
sludge or other causes

- Removing of debris and human litter from rivers, canals and harbours
- Remediation of hypertrophication by removing sediment that contains elevated phosphorus

levels; this measure is common to control eutrophication in rivers, but is expensive and
controversial in terms of its effectiveness.

5.1.1 Dredging Sound

Five of the most common types of dredge used in the majority of projects are: Cutter Suction Dredge
(CSD), Trailing Suction Hopper Dredge (TSHD), Grab Dredge (GD), Bucket Ladder Dredge (BLD) and
Backhoe Dredge (BHD). The CSD and TSHD are hydraulic dredges, and use suction to transfer material from
the seabed to a barge or hopper. The GD, BLD and BHD are mechanical dredges and use bucket-type tools
operated in different ways to dig the seabed. The selection of the dredging method depends on the seabed
type, purpose, scale of operation and environmental impact (Thomsen et al., 2009).
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The sound generated by the dredging activity is the result of the combination of various of the
following processes: collection of seabed material, pump operation, sediment transport through the pipe
(CSD, TSHD) or by the mechanical system (GD, BLD, BHD), deposition of material in the barge or hopper,
and vessel machinery and propulsion (Thomsen et al, 2009; Robinson et al., 1995; CEDA, 2011; Genesis,
2011). The sound from dredging is continuous in character, but certain types of operation can generate
impulsive sounds, such as the impact of the bucket onto the seafloor in GD or BHD. The acoustic signature
of the dredging operation results from the combination of various simultaneous processes, which depend
on the dredging system and operational conditions. While in most dredging operations the individual
processes cannot be separated, in Grab Dredges a sequence of individual processes occur within each
operational cycle.

The propeller generates noise, but not all dredging vessels are self-propelled. The propulsion engine
and power plant used to drive the dredges produce relatively strong continuous sound that is transferred
into the water through the hull. Lack of maintenance and lubrication of the mechanical parts of the dredge
system and engines can contribute to increase sound levels (CEDA, 2011). The radiated sound levels and
acoustic signature of different dredges, even within the same category, are significantly affected by
differences in the number, size and installation of the drag head or bucket, size of the vessel or engine
power (Thomsen, 2009).

The aggregate type can affect the high frequency radiated levels (> 1 kHz) and excavating hard,
consolidated sediments may generate more intense sounds than porous, unconsolidated sediments.
Before dredging, the use of explosives or hammering is sometimes necessary (CEDA, 2011; Robinson et al.,
2015).

Dredging generates sound in the low frequency range (< 1 kHz), with source levels typically in the
range of 165-185 dB re Tu@1m. Dredging systems predominate in coastal regions, where low frequencies
do not propagate well, and acoustic pressure attenuates rapidly due to multiple sea bottom interactions;
dredging sounds are normally undetectable beyond 25 km. The sound is continuous and broadband in
nature and can include tonal components up to a few kHz. Sound levels are lower than those from larger
vessels, but dredging systems operate in an area for days or weeks, which may result in a higher sound
exposure for species that inhabit coastal regions (Richardson et al., 1995).

5.1.2 Cutter Suction Dredge (CSD)

In a Cutter Suction Dredge a cutter-head installed at the end of a suction pipe is lowered from the dredge
and moved in an arc to loosen the material from the seabed. The removed material is pumped and brought
to the surface where it is discharged into a barge or transported through a pipeline. The CSD is most often
used to remove hard substrates without the need of explosives. A TSHD is sometimes used to pump the
material cut by the CSD. The CSD is commonly used in capital dredging (Reine & Clarke, 2014; Genesis,
2011; Thomsen, 2009).

A CSD is not self-propelled and has to be towed by tugs to the dredging site. Once in site, the CSD
is moored in place with the aid of two spud poles, heavy pipes installed at the rear of the dredge hull. The
spud poles are sequentially raised and dropped into the seafloor to keep the vessel in position while
allowing forward movement. The ladder or cutter head describes an arc around the walking spud, which is
mounted in a movable carriage that allows the advance or stepping of the dredge to the next digging
position. The auxiliary spud is used to keep the vessel in place while the walking spud is raised (Reine &
Clarke, 2014; IADC, 2014; CEDA, 2011).

The sources of noise in a CSD include the continuous sound from dredge pumps above and under
water, the excavating sound from the cutter head, the seabed impact of the spuds and carriage operation
for the walking spud, the machinery in the dredge, the tug, and if used, the pipeline for the transport of
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the excavated material (see Figure 5.1). The removed material will produce a rumbling sound with irregular
pulses in the pipe when pumped, especially if it consists of large fragments of consolidated sediment and
rock (CEDA, 2011).

PIPELINE
SOUND

Figure 5.1 Potential sound sources in a cutter suction dredge (from Reine & Clarke, 2014)

Hydraulic dredges (CSD and TSHD) are generally louder than mechanical dredges (CEDA, 2011). Figure 5.2
and Figure 5.3 is show the third-octave band spectrum and spectral density of various CSD dredges.

135 T T T T T T T T T

SN —— Beaver Mackenzie (CSD, r = 190 m}

—=== Aquarius (CSD, r = 190 m)

O Florida (CSD, r = 200 m) 7
\

130 -

Sound Level [dB re 1xPa@r]

100 L I s L L L L s
31.5 63 126 2560 500 1000 2000 4000 8000 16000

Frequency [Hz]

Figure 5.2 Third-octave spectra of cutter suction dredges Florida (after Reine & Clarke, 2014), Beaver Mackenzie and Aquarius
(after Greene, 1987).
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Figure 5.3 Power spectral density of cutter suction dredges Beaver Mackenzie (left) and Aquarius (centre), dredging at 0.19 and
0.2 km from the receiver (from Richardson et al., 1995).
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5.1.3 Trailing Suction Hopper Dredge (TSHD)

A Trailing Suction Hopper Dredge is a self-propelled vessel that trails a drag-head across the seafloor while
in transit. The suction pipe or drag-head pumps the excavated material, which is deposited into one or
more hoppers in the vessel. When the hoppers are full, the TSHD travels to a discharge area to offload the
material either by pumping it out or by releasing the load through gates located in the hull. A THSD is
effective in removing loose material, but is less effective at removing harder substrates (Richardson et al,,
1995; Reine et al, 2014; Thomsen et al.,, 2009; Todd et al., 2015; Genesis, 2011).

The main sources of noise in a TSHD include the inboard and underwater pump, drag-head
excavation, pumped substrate hitting the pipe interior, vessel sounds related to propeller, thruster and
machinery, hopper loading and offloading and support vessels (see Figure 5.5). Pump sounds occur
intermittently during dredging and discharge. Much of the radiated sound is originated in the propeller
and vessel engine, along with pumps and generators. The intensity of the digging sound produced by the
drag-head is relatively low in fine sediments typically found during maintenance dredging (Reine & Clarke,
2014). The aggregate extraction process increases the sound levels above 1 kHz; the transport of the
material through the pipe is possibly the major contributing source in this range of frequencies (CEDA,
2011). The sound levels are also dependent on the substrate type; coarser sediments produce the highest
sound levels (CEDA, 2011). Propeller cavitation is also an important sound source at high frequencies.
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Figure 5.4 Potential sound sources in a trailing suction hopper dredge (from Reine & Clarke, 2014).

The effects of pumping, drag-head excavation and sediment type on the received sound level spectrum
are shown in Figure 5.5 and Figure 5.6 (left). The sound produced by a TSHD is mainly continuous and most
of the energy is below 1.2 kHz (Reine et al., 2014; see Figure 5.7, left). Some dredging operations may be
characterised by a higher dominant frequency (see Figure 5.7, right).
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Figure 5.5 Effect of pump (left) and drag-head (right) on the received spectrum of TSHD Sand Falcon (after Theobald et al., 2011).
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The acoustic signature results from the combination of various simultaneous sound radiating processes,
however the dredging operation can be separated into excavation and transit. The spectra of the various
processes involved in dredging operations are shown in Figure 5.6, right. The spectrogram of a full
dredging activity is represented in Figure 5.8.
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Figure 5.6 Effect of sediment type on the received dredging spectrum (left, after Lepper et al., 2012; Theobald et al., 2011; Robinson
et al,, 2011) and third-octave band spectra of different activities occurring during dredging operations (right, Jong et al., 2010).
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Figure 5.7 Third-octave band spectra for five TSHDs, with predominant low frequency (left) and high frequency (right) content.
After Lepper et al., 2012; Theobald et al., 2011; and Robinson et al., 2011.
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Figure 5.8 Spectrogram of a full dredging activity from TSHD Sand Falcon at the closest point of approach (from Robinson, 2015).
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5.1.4 Grab Dredge (GD)

A Grab Dredge is a mechanical dredging system that uses a crane-operated clamshell bucket to dig into
the seabed. The clamshell consists of two buckets that clamp together and close as they reach the seafloor.
The grab full of sediment is then raised and the material is deposited into a barge or hopper. Grab dredges
come in different forms and most of them use spud poles to move the pontoon and keep position, which
allow easy operation over large areas (see Section 5.1.2 "Cutter Suction Dredge"). This dredging system is
economical, is often used in excavation of bay mud and unconsolidated sediments, and is a good option
to reach areas of difficult access. Grab dredges are often called bucket dredges, and should not be confused
with Bucket Ladder Dredges (BLD), which operate in a completely different way (Dickerson et al., 20071;
Thomsen et al.,, 2009; Richardson et al., 1995).

Figure 5.9 Grab dredge Viking operating in Cook Inlet, Alaska (from Dickerson et al., 20071).

A grab dredge produces a repetitive sequence of sounds associated to seven separate dredging events:
winch lowering, bucket striking the bottom, digging, bucket closing, winch rise, discharge of material into
barge and discharge of barge material (Dickerson et al., 2001; see Figure 5.10). The monitoring of sound
produced by two grab dredges, the GD Viking for capital dredging (see Figure 5.9) and the smaller GD
Crystal Gayle for maintenance dredging, was conducted in Cook Inlet (Alaska) by Dickerson et al. (20071).
Most of the energy content of sounds registered in this study was in the range of 20-1,000 Hz. The acoustic
measurements on the grab dredge Viking showed that the clamshell striking the seabed produced the
most intense sounds within the dredging cycle. The splash caused by the clamshell hitting the water surface
could be detected at relatively short distances. The intensity of the sound produced by the sediment
discharge varied with the amount of material existing in the barge; the sediment in the barge dampens the
sound from additional dumped material, thus an empty barge tends to produce higher sound levels. The
clamshell closing resulted in the least intense sounds. The barge emptying occurred less frequently, at
intervals of several hours. The characteristics of the excavating sounds also appeared to be greatly
influenced by the type of seabed material, and fine unconsolidated sediments resulted in lower radiated
sound levels compared to more compacted coarse sediments.

Miles et al. (1987) showed that source levels during the operating cycle of a grab dredge at the 250
Hz 1/3 octave band varied between 150 to 162 dB re TuPa@1m. The sound associated with the closing of
the clamshell contained little energy, but in contrast with the study from Dickerson et al. (2001), the winch
rise with the loaded clamshell produced the highest source level within the cycle, with a broadband value
of 167 dB re 1uPa@1m. This disagreement between the measurements from Miles et al. (1987) and
Dickerson et al. (2001) for the winch phase suggests that poorly maintained gears can generate very intense
sounds. Miles et al. (1987) indicated that the sound radiated by the tug and barge used to transfer the
material was stronger than the dredging operation itself.
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Figure 5.10 Waveform of a typical operating cycle of the grab dredge Viking. The noise events within the cycle are described in
blue (from Dickerson et al., 2007).

Some additional factors that may have an impact on the radiated sounds include the size of the bucket,
the state of the various types of equipment and the skill of the plant operator Dickerson et al. (2001). The
characteristics of the dredging sound can vary considerably with the actions of the operator, as these will
affect the speed, position and orientation of the bucket as it impacts the seafloor.

Figure 5.11 Potential sound sources in a grab dredge (from Reine & Clarke, 2014).

5.1.5 Bucket Ladder Dredge (BLD)

A Bucket Ladder Dredge, sometimes called a bucket dredge, is a mechanical dredging system that uses a
set of buckets on a circulating chain to scrape the seafloor. The removed material is carried to the surface
and deposited inside the dredge. The BLD is moored in place with anchors and is suitable for most
substrates with the exception of rock. The BLD is one of the older forms of dredger (Thomsen et al., 2009;
Genesis, 2011). No studies about the acoustic output of this type of dredge have been found.
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Figure 5.12 Bucket ladder dredge during operation (from static.wixstatic.com).

5.1.6 Backhoe Dredge (BHD)

A Backhoe Dredge is a mechanical dredging system similar to a Grab Dredge, but instead of a crane-
operated clamshell it uses a backhoe or hydraulic articulated arm ended in an open bucket, which is
operated from the rear of the vessel. The excavated material is normally deposited in barges. The vessel is
normally equipped with spud poles for anchoring and movement.

In a study published by Reine & Clarke (2014), the sounds produced by a CSD and a BHD in the
shallow waters (< 15 m) of New York Harbour for the Harbour Deepening Project were presented. The
hydraulic dredge, Florida, was used for rock fracturing, whereas the mechanical dredge New York was used
to remove the fractured rock left by Florida. The source levels produced by the BHD New York for six
distinct acoustic sources were presented: the onboard engine/generator, bucket bottom impact and
excavation, hydraulic ram operation, barge loading, anchoring and walking spuds, and an unidentified
popping noise clearly related to the dredging operation. The excavation and bucket impact produced the
most intense sounds, followed by the operation of the spud poles. The loading of the barge may or may
not produce detectable sounds, depending on the amount of sediment accumulated in the barge, which
provides a damping mechanism to the dumped material. The source levels are summarised in Tab. 5.1.

ECHANICAL:

ENGINE &

Figure 5.13 Potential sound sources in a backhoe dredge (from Reine & Clarke, 2014).
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5.2 Drilling

The facilities used for offshore drilling can be classified in three main groups: 1) islands, which can be natural
or man-made (artificial and caisson); 2) platform standing on legs, including fixed platforms and jack-up
rigs; and 3) drilling vessel, including semi-submersibles and drill ships (Richardson et al., 1995; Gotz et al,
2009). The most common type of mobile drilling platform is the jack-up rig, with 363 vessels operating
worldwide compared to the existing 169 semi-submersibles and 50 drill ships (Genesis, 2011). Drill rigs are
very large structures, of the order of 100 m each side. The selection of the facility depends on water depth,
oceanography, ice cover, required duration for the activities planned for the platform and other factors.
The operation and acoustic characteristics of the main types of offshore drilling facilities are described in
the following sections.

The main sources of sound in a drilling platform include: 1) machinery and drilling equipment,
including pumps, compressor and generators; 2) drilling on the seabed, during drilling the turntable will
operate and the machinery will work at higher power; 3) dynamic positioning thrusters, used for positioning,
can generate high cavitating noise (see Chapter 4 "Vessels"); and 4) aircraft and vessel support, generally
from powerful vessels equipped with dynamic positioning thrusters (Genesis, 2011). The sound produced
by drilling is continuous and its level is typically quoted as RMS. During drilling, low-frequency tonal
components are generated, including infrasonic tones in some cases.

5.2.1 Fixed Platforms

The platform deck in fixed platforms is installed on top of a jacketed platform built on concrete or steel
legs anchored directly onto the seabed, or even on top of a spar, tension leg platform (TLP) or gravity
structure. The platform deck contains the drilling rig, production facilities and crew quarters. The drilling
rig is not a permanent part of the fixed structure, but it can be left on the platform for future drilling or for
cost reasons. The size of a drilling platform depends on the oil field and machinery required for production.

Fixed platforms are immobile, unlike jack-up rigs, semi-submersibles or drill ships. As a result of their
immobility, these platforms are designed for long term use to drill new development wells. In shallow
water, jack-up rigs are a more economical solution (see Subsection 5.2.2, “Jack-up Rigs"); in deeper waters
and for depths up to about 500 m fixed platforms are economically feasible.

Figure 5.14 Conventional jacket (left) and spar (right) fixed drilling platforms

Sound produced from fixed drilling platforms is relatively unstudied. A study from Gales (1982) on one
drilling platform and three combined drilling/production platforms suggests that fixed drilling platforms
may not be very noisy, and their sound levels are apparently somewhere in between those from drill vessels
and islands (Richardson et al,, 1995; Gotz et al., 2009). The strongest tones in all platforms were found near
5 Hz, with sound levels of 119-127 dB.ms from near field measurements; the highest tone occurred at 1.2
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kHz. One of the reasons that may explain why fixed platforms produce relatively low levels compared to
drill vessels and semi-submersibles is that all the machinery is located above the water (Genesis, 2011).

5.2.2 Jack-Up Rigs

Jack-up rigs are moveable, non-self-propelled drilling facilities anchored using a set of three large open-
truss legs or spudcans. The platform deck floats on the sea surface allowing it to be towed by tugs to the
drill location. When the drill position is reached, the spudcans are lowered until they make firm contact
with the seabed and the platform rises above the sea surface. The platform deck contains the drilling
equipment, machinery and crew quarters. Jack-up rigs are used in shallower waters than fixed platforms,
typically up to 100 m.

The only study available on sounds generated by jack-up rigs was produced by Erbe and McPherson (2017).
In their paper, Erbe and McPherson report sound levels for drilling and standard penetration testing (SPT)
carried out from jack-up rig Sideson Il during geotechnical site investigations in two different locations in
Western Australia. Maximum recorded broadband source levels for drilling and SPT were 145 and 160 dB
re TuPa @1m (RMS, 90% energy window), respectively. For details, see Table 5.2, part 4.

=
1

A" B

Figure 5.15 Plan view (left, from www.ogj.com) and lateral view (right, from www.pvdrilling.com) of two jack-up drilling rigs.

5.2.3 Artificial Islands

An artificial island is man-made rather than formed by natural means. Artificial islands have been used
since the seventieth century for coastal defence against invading armies (Karam, 2015) but remain
extremely rare for drilling. These islands are built with sand extracted from the seabed in a different location
with dredging techniques. Artificial islands can be constructed in waters of maximum depths of 70 m; in
deeper waters the large amount of required sediment, and the associated cost and environmental
implications, make artificial islands impracticable.

The main advantages of artificial islands for exploratory drilling are summarised in the following points
(Karam, 2015):

- Easy to combine gathering pipelines on the island with pipeline network on land

- Insitu treatment of waste, including oil, drilling mud, chemicals, etc.

- Reducing turbidity and acoustic pollution

- Personnel lives and works in the island, reducing travelling time and costs

- Safer working environment

- Increased number of potential wells

- No need for decommissioning
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In natural or man-made islands, sound from the drill rig is poorly transmitted into the water. The
transmitted sound is low in frequency and source levels are rather low (~145 dB re TuPa@1m), making the
radiated sound inaudible at ranges beyond a few kilometres (Richardson et al., 1995; Gotz et al., 2009). In
a study from Blackwell et al. (2004) the maximum broadband sound level was 124 dB re 1TuPa@1 km (see
Table 5.2 for details). Drilling sound from icebound islands has low source level and is generally confined
to low frequencies (Richardson et al., 1995); a study from Malme & Mlawski (1979) on sounds produced by
two icebound gravel islands, natural and man-made, in Prudhoe Bay (Alaska) showed that most of the
acoustic energy was below 200 Hz. Sound produced by drilling activities in islands varies considerably with
ongoing operations (Richardson et al., 1995).

During winter in shallow arctic waters drilling may be done from ice pads resting on the bottom and
artificially thickened by pumping water on their surface. In these type of installations sound does not
propagate far; in a 6-7 m water column, drilling sound was attenuated rapidly from 125 dB@130 m to 85
dB@2,000 m (Richardson et al., 1995).

Figure 5.16 Artificial drilling and production island Northstar in open water (left, from www.wikipedia.org) and icebounded (right,
from oilrig-photos.com)

5.2.4 Caissons

An alternative method to build an artificial island, different than the direct accumulation of sand or gravel,
consists of using a watertight shaping structure know as caisson. There are three main types of caissons:
Caisson Retained Island (CRI), Concrete Island Drilling System (CIDS) and Single-Steel Drilling Caisson
(SSDQ).

A Caisson Retained Island (CRI) is a platform for exploratory drilling consisting of four to eight steel
caissons, which form the outer perimeter of the island. The CRI system is composed of three structural
elements: the base or berm, the steel retaining structure or caisson ring, and the sand core. The ring of
caissons is ballasted down onto the bottom foundation or berm and the interior of the ring is filled with
dredged sand or gravel. Each steel caisson weighs several thousand tonnes when fully ballasted. The drill
rig and support facilities are installed on the sand core as on a conventional island.

The development of the CRI took place as exploration activities moved into areas with scarce seabed
material, where sacrificial-beach islands are impracticable. Oil exploration in the shallow waters of the
Beaufort Sea made use of temporary artificial islands since 1973. Caisson islands are designed to resist the
forces of ice and the effects of summer storm waves; these artificial islands operate throughout the year,
in contrast to the seasonal limitation of drill ships and jack-up rigs. An additional advantage of CRI is the
requirement of significantly less sand than conventional artificial islands. The caisson can also be detached
to be used in another location (Mancini et al., 1983; Der, 1983; Comyn, 1984; Richardson et al., 1995).
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Figure 5.17 Caisson-retained island Tarsuit at different stages. Ballasted ring caisson and beginning of dredged sand infill (left)
and completed island with drill in operation under full ice cover (right). From www.bittner-shen.com)

A Concrete Island Drilling System (CIDS) is a self-contained, mobile island floated into place and ballasted
down onto a subsea berm or Steel Mud Base (SMB). The Concrete Basic Brick (CBB) is the central module
that sits on top of the SMB and is directly exposed to the extreme environmental conditions of the arctic.
The top module is the Deck Storage Barge, which comprises the Integrated Drilling Unit (IDU), living
quarters and storage. Examples of CIDS are the Molikpag and Glomar, the last one depicted in Figure 5.18.

INTEGRATED
DRILLING UNIT (IDU)

STEEL DECK
STORAGE BARGE

44’ CONCRETE BRICK

%—Sﬁﬂ MUD BASE

SEA BED

Figure 5.18 Concrete island drilling system Glomar Beaufort 7 (aka Orlan) under severe ice pressure conditions (left) and diagram
of its structural elements (right). From www.precastdesign.com

The Single-Steel Drilling Caisson (SSDC) is an ice-resistant, mobile offshore drill facility converted from an
old oil tanker in the 1980s, the World Saga, purchased by Canadian Marine Drilling and renamed as Canmar.
The hull of the SSDC consists of the forward two thirds of the original tanker and is used as a submersible
barge, on top of which is installed the drill rig. The barge acts as an artificial steel berm when ballasted with
water onto the seafloor. The system has six Caterpillar 1,000 hp diesel generators, and is not self-propelled
so it has to be towed to location. The SSDC can drill a well to a maximum depth of 7,600 m. This type of
drill barge was designed for exploratory drilling in the shallow, ice-covered waters of the Beaufort Sea, to
overcome the limitations of the other offshore drilling solutions, such as the limited station keeping ability
of drill ships of the expensive and time consuming relocation of CRI and CIDS.
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Figure 5.19 Single steel drilling caisson Canmar (from www.yergens.net)

Little data exists on sounds produced by these three types of caisson drilling facilities, but are apparently
intermediate between those from drill-ships and conventional artificial islands. Greene (1987) presented
sound measurements from a caisson-retained island (CRI), and the broadband source levels (20-1,000 Hz)
appeared to be much higher than those from artificial islands but lower than those from drill-ships. During
open water conditions, sound is better transmitted into the water than at artificial islands, resulting in higher
sound levels (Richardson et al., 1995, see also Table Main). Hall & Francine (1991) measured sounds from
the self-contained concrete drilling caisson Glomar, which showed that the radiated energy above 30 Hz
was relatively low, and after including infrasonic components sound levels increased in about 15 dB; a
strong tone near 1.4 Hz was attributed to the rotation rate of the drilling turntable (Richardson et al., 1995).
Gallagher et al. (1992) measured sounds produced by the single-steel drilling caisson Canmar during
drilling operation in 15 m waters with 100% ice cover. Although the tonal component associated to the
rotation rate of the drilling turntable (1.5 Hz) was detected with an accelerometer, it did not appear in the
sound pressure measurements and the drilling sound was several decibels higher at sonic frequencies
(Richardson et al., 1995).

; ; : r ! ! , :
120 + RS ——— Northstar (Al) |
N,
..... N f e, e — === NJA (CRI)

Sound Level [dB re 1pPa@200m]

50

. L | L . . | L
315 63 125 250 500 1000 2000 4000 8000
Frequency [Hz]

Figure 5.20 Third-octave band sound level spectra at 200 m from the artificial gravel island Northstar (from Blackwell et al., 2004)
and a caisson retained island (from Greene, 1987).

5.2.5 Semi-Submersibles

A semi-submersible is a mobile floating platform supported on large pontoons submerged in water. The
pontoons are filled with water until they reach the desired depth. They can be anchored by six to twelve
anchors tethered by chains and wire cables or kept in place using dynamic positioning. The deck is elevated
more than 30 m above the pontoons and supported on large steel columns. Semi-submersibles can
operate in a wide range of depths, from 60 to 3,000 m, and are frequently used for drilling new wells. These
systems are reliable in rough seas.
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VAN

Figure 5.21 Self-propeller semi-submersible drilling rig MOSS CS-50 Mk Il Polyarnaya Zvezda (left, from www.oaoosk.ru) and
diagram of a deep-water semi-submersible (right, from www.glossary.oilfield.slb.com)

Unlike in a drill ship, in a semi-submersible there is no direct contact between the hull and the water. The
deck remains several metres above the water surface, which means that the only transmission paths of
sound and vibration produced by machinery and deck activity are the air or the steel risers (Richardson et
al., 1995).

Greene (1986) measured sounds produced by the semi-submersible drill rig SEDCO 708 during drilling
operations near the Aleutian Islands, in the Bering Sea, in water depths of 114 m. The broadband source
level in the range of 80-4k Hz with the hydrophone at 30 m depth was 155 dB re 1uPa@1 m. Several tonal
components were present, which varied depending on the operating speed of the drill rig; the only stable
tonal components were associated to the 60 Hz alternating electric current and potential harmonics at 181
and 301 Hz.

McCauley (1998) measured sounds produced by the exploratory drilling semi-submersible Ocean
General in the Timor Sea during drilling and non-drilling periods. A broadband sound level of 117 dB re
TuPa@125m was reached during drilling, 4 dB higher than during the non-drilling period.

Nedwell & Edwards (2004) published sound measurements from the semi-submersible drilling rig
Jack Bates in deep waters northwest the Shetland Islands for three different operational stages: plant
operation, dynamic positioning and drilling. Dynamic positioning generated a source level of 188 dB@1m,
12 dB higher than drilling and 29 dB higher than plant operation. Drilling caused an increase of 10 to 20 dB
in the band of 20-500 Hz and clear tonal components appeared at about 130, 200, 350 and 600 Hz,
probably produced by cutting forces from the seabed or driving forces from the machinery. Thrusters
contributed to increase the radiated acoustic energy in the band of 2-30 Hz.
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140 - —=== Drilling, No Thrusters (SS} 1
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Figure 5.22 Third-octave band sound level spectra at 200 m from semi-submersible drill rig Jack Bates for three operating phases:
plant operation, drilling and dynamic positioning (after Nedwell & Edwards, 2004).
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5.2.6 Drill Ships

A drill-ship is a self-propelled vessel outfitted with a drilling unit and kept in position by anchors or dynamic
positioning. Purpose-built designs are used today, but in the early years drill ships were built from modified
tanker hulls. Drill ships are mostly used for exploratory drilling and can reach depths of up to 3,700 m.

Figure 5.23 Conical drilling unit Kulluk (left) and drill-ship West Navion (right)

The hull of the drill ship is large and remains in direct contact with the water, which provides good acoustic
coupling and favours the transmission of machinery vibrations. Drill ship spectra contain tonal components
up to 600 Hz attributable to diesel-electric generators, with varying frequency depending on electric load
(Richardson et al., 1995). Drill ships are normally noisier than semi-submersibles under similar operating
conditions, with source levels as high as 195 dB (Genesis, 2011; Gotz et al., 2009; Richardson et al.,, 1995).
Other types of offshore drilling facilities tend to generate lower sound levels and frequencies.

West Navion (DS)
170 + === Explorer { (DS}
-------- Explorer I (DS)
— — Stena Forth (DS)
Kulluk {DS)

Source Level [dB re 1Pa@1m]

130

i i i i i I i
315 63 125 250 500 1000 2000 4000 8000
Frequency [Hz]

Figure 5.24 Third-octave band source level spectra from five drill ships: West Navion (from Nedwell & Edwards, 2004), Explorer |,
Explorer I, circular drill barge Kulluk (from Greene, 1987), and Stena Forth (from Kyhn et al., 2011).

There exist a few more studies on sounds produced by drill-ships than for the other categories of offshore
drilling facilities (Greene, 1987; Nedwell & Edwards, 2004; Kyhn et al, 2011). Sound levels in two converted
freighters, the Canmar Explorer | and II, were significantly higher during drilling than during well-logging
(Greene, 1987). Measurements of sounds generated by Canmar Explorer Il in different years showed that
sound levels change with time, probably due to changes in machinery operation (Miles et al., 1987). Greene
(1987) also measured drilling sounds from the Conical Drilling Unit (CDU) Kulluk, a floating drilling platform
specifically designed for arctic waters, which produced a broadband source level of 179.6 dB in the range
of 20-1.6k Hz; Hall et al. (1994) reported a source level for Kulluk during drilling of 191 dB in the range of
10-10k Hz. The highest reported source levels during drilling operation are those from drill-ship West
Navion, with a value of 195 dB re TuPa@1m for the 100-400 Hz band (Nedwell & Edwards, 2004).
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5.3 Production

An oil offshore platform is a large structure that includes facilities for subsea drilling, extraction and
processing of hydrocarbons or temporary storage of drilled product, and most of them also include crew
quarters. After completion of drilling work the platform is adapted or replaced by a permanent oil and gas
production platform. The types of platform used for production are essentially the same types that can be
used for well drilling and can be grouped in three main categories: 1) fixed platforms, such as conventional
rigs and compliant towers; 2) artificial islands and caissons; 3) floating platforms, such as semi-submersibles,
drill-ships, FPSOs, tension leg platforms and spars (see Figure 5.25). A remote subsea well can be connected
to a permanent production platform via flow lines (see Figure 5.25, platform 10).

Figure 5.25 Compilation of different types of offshore oil and gas platforms: 1, 2) conventional fixed platforms, 3) compliant tower;
4, 5) vertically moored tension leg and mini-tension leg platform; 6) spar; 7, 8) semi-submersibles; 9) floating production, storage,
and offloading facility; 10) sub-sea completion and tie-back to host facility (from oceanexplorer.noaa.gov)

Offshore production platforms produce underwater sound, but the aircraft and vessel support will also
contribute to the sound field. Figure 5.26 shows the spectra of three types of production platform.

—=== BHP Douglas (FPP)
— = Phillips A (FPP)
weeeems Northstar (Al)
—— & vessels (FPSO)

——

Source Level [dB re 1,Pa@1m]

3.5 63 125 250 500 1000 2000 4000 8000 16000 31500
Frequency [Hz]

Figure 5.26 Third-octave source level spectra of fixed production platforms BHP Douglas (after Nedwell et al., 2003) and Phillips
A (after Blackwell & Greene, 2003), artificial gravel island Northstar (after Blackwell et al.,, 2004), and 95" percentile spectra from
6 FPSO vessels (after Erbe et al., 2013).

5.3.1 Fixed Platforms

Conventional fixed platforms are supported by jacketed structures consisting of concrete or steel legs
attached to the seafloor. The platform deck includes the drilling unit, production facilities and crew
quarters. Fixed production platforms are designed for long term use in waters up to 500 m deep.
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The sound produced by a platform depends on several factors, such as size and shape of the
underwater structure surfaces, structural design and material, operation and degree of coupling of the
machinery to the structure, energy supply from external generators, muffling of engine exhausts, etc (Gales,
1982). Figure 5.27 shows the typical pathways and sources of sound in a fixed platform. Underwater sounds
produced by jacketed fixed platforms standing on metal legs are expected to be relatively weak, due to
the placement of the deck well above the sea surface and the small contact area of the structure with the
water (Richardson et al., 1995).

DRILL PLATFORM

DIESEL ENGINE OR TURBINE

EXHAUST PORT

)

DRILL STRING.
AND GASING

o

77/

oRILLBIT

Figure 5.27 Diagram of possible sound pathways in a fixed platform during drilling and production (Gales, 1982)
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Figure 5.28 Spectra of the multi-leg fixed platform FP1at 18 m water depth and 9 m hydrophone depth (left) and multi-leg fixed
platform FP2 at 23 m water depth and 50 m hydrophone depth (right). Both spectra are obtained at a distance of 9 m from each
platform. The dashed line shows the contour of the broadband spectrum and the vertical lines are the main tones. The spectra
are represented on top of the standard deep sea ambient noise curves (Gales, 1982)

Gales (1982) presented data on sound generated by eighteen oil and gas platforms including semi-
submersibles, fixed multi-legged platforms and an artificial island, during drilling and/or production in
areas of Santa Barbara (CA), Upper Cook Inlet (AK), Baltimore Canyon (NJ) and Santa Barbara-Carpenteria
(CA). Eleven bottom-standing fixed platforms with multiple steel legs were studied during production
operations. The radiated sound was steady with a broadband spectrum combined with tonal components.
The strongest tones were below 100 Hz, particularly at frequencies between 4 and 38 Hz, with sound levels
of 110 to 130 dB re TuPa@100m. Peak spectral levels appeared somewhere in between 50 and 500 Hz. The
platforms produced less noise than the supply vessel activity, which resulted in an increase of 20 to 30 dB
in the overall underwater sound level. Underwater sounds recorded during production activities did not
appear to be much different than those from drilling operations. The noise generated by the 11 multi-leg
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fixed platforms engaged in production activities were classified as moderate, except two of them that were
classified as quiet and noisy.

Measurements presented by Nedwell et al. (2003) from the production platform Douglas situated
northeast of the North Hoyle windfarm (Wales) showed a sound level of 135 dB re @500m while support
vessels were operating nearby.

5.3.2 Artificial Islands and Caissons

The sounds produced by artificial islands and caissons during production activities are likely to be strongly
attenuated, as it occurs during drilling (see Section 5.2, "Drilling”).

Gales (1982) studied the sounds produced by various types of oil and gas facilities, including an
artificial island. The sounds from the island were recorded during production activities in Santa Barbara
(CA) in waters 14 m deep with a sandy and rocky seabed. The radiated sound levels were low and the island
was rated as “very quiet”, compared to the "moderate” levels of most fixed multi-leg platforms. The major
sound source was a submerged pump, which was not operating continuously. At a distance of 34 m from
the island, tones in the 30-120 Hz frequency range had sound levels of only 89-94 dB. The low noise of the
artificial island was probably the result of a combination of factors, including remote electricity supply, poor
sound transmission through the island and into the water, and high attenuation of low frequency sound in
shallow water.

Measurement of sounds generated during production by the artificial gravel island Northstar were
obtained during different periods and presented by Blackwell et al. (2004) and Blackwell & Greene (2006).
Sound levels were around 97 dBms at a distance of 500 m.

5.3.3 Floating, Production, Storage and Offloading

A Floating, Production, Storage and Offloading or FPSO facility is a double-hull structure, generally ship-
shaped, used for processing and storage of hydrocarbons at sea. This type of offshore platform is moored
in place for long periods and equipped with processing and storage facilities; FPSOs do not drill for oil and
gas. Some variants are used exclusively for storage (FSO, FSU) or production (FPS). FPSOs gather
hydrocarbons from multiple wells through flow lines into the riser at its bow, and are mostly used for small
fields. Their advantages are the easy deployment in deep water, quick mooring detachment in case of
severe weather and use of shutter tankers in replacement of expensive oil pipelines.

Figure 5.29 Photo from Cossack Pioneer FPSO (from Erbe et al., 2013).

The processing equipment is located on deck and the storage area lies below it, reducing the amount of
machinery vibrations transmitted into the water. The highest sound levels are produced during docking
and undocking of shutter tankers used to transport the treated oil from the FPSOs. Such operations are
dominated by the sound from dynamic positioning thrusters, propulsion system and machinery in the
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FPSOs, shutter tankers and support tugs. The propulsion system from FPSOs and tankers operate at low
and constant revolutions per minute, making propeller cavitation less likely. FPSOs, unless transiting or
using dynamic positioning, are quieter than tankers, rig tenders and tugs (Erbe et al., 2013).

The most detailed study found on sounds generated by FPSOs is made by Erbe et al. (2013), in which
acoustic recordings during production activities from six FPSOs moored off Western Australia are
presented. The broadband source levels were of the order of 180 dB re TuPa@1m.

5.3.4 Tension-Leg and Spar Platforms

A tension-leg platform (TLP) is a floating drilling and production facility moored to the seabed by vertical
tendons. Standard tension-leg platforms are used in water depths up to 2,000 m; mini tension-leg
platforms are more economical than the standard units and are used as satellite or early production
facilities in waters up to 1,300 m deep.

A spar platform is a drilling and production platform with a hollow cylindrical hull secured to the
seabed in a similar way to TLPs but with more conventional mooring systems. The spar is more stable than
the TLP due to its large counterweight at the bottom

No studies on sounds produced by tension leg or spar platforms were found.

Figure 5.30 lllustration of a tension-leg platform (left) and a spar platform (right)

5.3.5 Semi-submersibles and Drill-Ships

Semi-submersible and drill-ships are mobile floating platforms used for offshore drilling and production
of oil and gas (see Section 5.2, “Drilling”). No studies on sounds produced by these types of facilities during
production activities were found.
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5.4 Pipe Laying

Pipe-laying is a marine construction process used to connect offshore production platforms with on-shore
refineries by the installation of underwater pipelines. During pipe-laying, a pipe-lay vessel prepares the
pipeline onboard and lowers it into the water as the vessel advances itself or with the assistance of anchor
handling tugs (Zykov et al., 2013). Types of pipe-lay vessels include barges, reel lay vessels, modified bulk
carriers and semi-submersible lay vessels (Genesis, 2011).

Pipelines can be either laid directly on the seabed or buried after trenching. During trenching, a large
plough (~12 m long) is lowered onto the seabed above the pipeline and pulled by the vessel, at the time
the pipe is lifted, creating a trench where the pipeline will lie. The backfilling with sediments normally occurs
naturally by the effect of currents.

The buoyancy of the pipe affects the pipe-laying process, and a downward force is required to keep
it in place. In shallow waters, concrete is normally poured over the pipe; in deep waters, the required
thickness required for the pipe to resist the high hydrostatic pressures is usually enough to keep it on the
seabed. The downward force can also be provided by the oil passing through the pipeline.

Figure 5.31 Photo of pipe-lay vessel Castoro Sei (left) and pipe-carrier Normand Flipper (right). From Johansson & Andersson
(2012).

Figure 5.32 Photo of post-lay trenching vessel Far Samson (left) and sketch of post-lay trenching plough (right). From Johansson
& Andersson (2012).

5.4.1 Pipe-Laying Methods
The three most common pipe-laying methods are lay barge, tow-in and reel barge.

In the tow-in method one or two tug boats tow a floating pipe, suspended in the water via buoyancy
modules, which are generally removed or filled with water when the placement location is reached. The
pipe is welded and tested on shore. There are four main techniques in tow-in pipe laying: 1) surface tow,

120



Review on Existing Data on Underwater Sounds Produced by the Oil and Gas Industry

where the buoyancy modules keep the pipe on the surface; 2) below-surface tow, where modules of less
buoyancy are used to keep the pipe at mid depth with the forward motion of the tug boat, so the pipe can
settle when the vessel stops; 3) off-bottom tow, where a combination of buoyancy modules and weights
are used to keep the pipe just above the seabed, so the pipe will settle when the floats are removed; and
4) bottom tow, where the pipe is dragged along a flat seabed, typically in shallow waters with soft
sediments.

Lay-barge is the most common pipe-laying method. The barge includes facilities for pipeline assembly
and a lifting crane. Pipe sections 12-24 m long are covered with a special anticorrosion coating, welded
and lowered into the seabed, one at a time. There are two types of lay-barge techniques: 1) S-lay, where
the pipe is eased off the stern of the vessel directly from its deck, making the pipeline acquire an S-shape
as more sections are attached and lowered into the seabed (see Figure 5.33 and Figure 5.34, left); and 2) J-
lay, where the pipeline is lowered from almost a vertical position by a crane, making the pipeline to curve
only at the bottom, thus reducing the stress at the barge (see Figure 5.33 and Figure 534, right). J-lay
operations are suitable for pipe installation in deep water and high energy environments.

Figure 5.33 S-lay barge SEMAC-T (left, from www.drillingformulas.com) and J-lay barge (right, from www.rigzone.com)

Welding stotion

Hond over hand clomps

Suspensicn point WELDED ON BOARD

SAG BEND

Figure 5.34 Diagram of S-lay (left) and J-lay (right) pipe-laying methods (from www.rigzone.com)

Figure 5.35 Vertical reel barge (from www.rigzone.com)
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Reel barges carry a long, low diameter pipeline (<0.4 m) coiled in a reel drum (see Figure 5.35). The pipes
are prepared and welded together on shore.

5.4.2 Pipe-Laying Sounds

The pipe-laying activity itself is unlikely to have a noticeable contribution to the sound field; the largest
contribution comes instead from the pipe-laying vessel, supply ships and tugs, moving anchors, trenching
and backfilling (Johanson & Andersson, 2012). The handling of the several heavy anchors used by the pipe-
laying vessel for station keeping and forward movement is a noisy process, especially considering the use
of dynamic positioning thrusters by the anchor handling tugs. During pipe-laying, up to 10 ships can
operate in the same area, which will also contribute to the overall sound levels.

Measurements made by Hannay et al. (2004) showed that the sound radiated by pipe-laying vessels
was in the range of 10-1k Hz, with peak levels below 500 Hz. Anchored pipe-laying vessels generated lower
sound levels than the anchor handling tugs and support vessels. Rock placement may be necessary to
achieve the required burial depth of the pipeline; when comparing the sound levels produced during rock
placement and normal operations by pipe-lay vessel Rollingstone (Nedwell & Edwards, 2004) there was no
noticeable level increase, which again suggests that sound levels are dominated by vessel noise.

--------- Pipe Laying (PLY Castoro Sei]
—=—= Trenching (PLV Far Samson)
— = Anchor Op. (PLY Semac )
= Crane Op. (PLV h/4)

IN)
=1
=]

(=2} ~ @
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i

=
=)
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=
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Figure 5.36 Third-octave band source spectra of four pipe laying vessels during four different operating phases: Castoro Sei and
Far Samson during pipe laying and trenching (after Johansson & Andersson, 2012), Semac | during anchor operations (after
Austin et al,, 2004), and crane operations from an unidentified pipe-lay vessel (after MacGillivrai & Racca, 2006). Assumed a
transmission loss factor of 15 for all bands to calculate the source level spectra.
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5.5 Decommissioning and Explosives

Decommissioning takes place at the end of the lifecycle of an oil and gas production platform. In this stage,
the removal of structures attached to the seabed, such as wellheads and platform legs, comprises an
important part of the work. There are three main activities associated with well decommissioning:
explosions, shipping activity and drilling (Genesis, 2011). Explosives provide a fast and reliable way of
detaching the structure of an oil rig, but alternative cutting techniques such as tungsten-carbide blade,
diamond wire or hydraulic sheer cutters predominate today. However, explosives are still used and are
included as a contingency measure in case of failure of the mechanical cutting system. No acoustic studies
were found on cutting techniques; this section will focus on decommissioning with explosives, for which
more information is available.

Until the 1960’s 14-23 kg charge explosives were the main acoustic source used in marine seismic
surveys for the detection of hydrocarbon deposits nearshore; in the 1970's these were largely replaced by
air gun arrays. Small charge explosives have also been used in scientific studies to determine the
transmission loss and characteristics of the sea bottom, for submarine detection and even to deter seals
and dolphins from fishing gear (Richardson et al., 1995).

For the removal of oil and gas structures three main types of explosives can be used: bulk, configured
bulk and cutting charges (Genesis, 2011). Bulk charges, such as Comp-B and C-4, are mouldable, powerful
and have a high detonation velocity, and for these reasons are the most common method of explosive
cutting. Configure bulk charges are designed to focus the explosive energy along the cutting line, reducing
in this way the size of the charge. Cutting charges use the explosive energy to accelerate a band of cutting
material (e.g. copper) through the structure, and includes linear shaped charges and cutting tape.

5.5.1 The Underwater Explosion. Unconfined and Confined Explosives

The detonation underwater of an unconfined explosive charge produces an initial shock wave followed by
a sequence of damped periodic pulses, related to the oscillation of the bubble of hot gas created after the
explosion. The bubble initially expands beyond its equilibrium radius until it reaches its maximum. Then,
the collapse is initiated and the bubble is forced past equilibrium by the momentum of the surrounding
water, until the minimum radius is reached. The bubble expands once again, starting a process of expansion
and compression. The underlying physics of an oscillating gas bubble in water are the same for air guns
and explosive charges.

The acoustic characteristics of the initial shock wave are often represented by empirical equations,
derived from explosion shock theory and confirmed by experiments (Richardson et al., 1995). The sound
pressure of an underwater explosion reaches its maximum in about one microsecond. For unconfined
charges, detonated far from any boundary such as the sea surface or seafloor, the peak pressure of the
shock wave is given by (Urick, 1983):

1/3 113

m
Ppk_unconf = 5.24-107 <CT) (5.1)

where pop uncons 1S the maximum pressure of the shock wave in Pa, m. the charge mass in kg and r the
distance from the explosion in m.

A similar equation was derived by Barrett (1996) from systematic military experiments:
0.27

m
Ppk_unconf = 5-107 7;—13 (52)
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Eqg. 5.1and 5.2 were obtained from deep water experiments, and are not necessarily applicable to shallow
water explosions. Nedwell & Edwards (2004) affirms that Eq. 5.1and 5.2 represents the worst-case scenario,
in that sound levels from unconfined explosions are significantly lower in shallow than in deep waters.

The sound pressure experiences an exponential decay after it reaches its maximum. The
instantaneous pressure at time t after the pressure maximum of the shock wave is given by (Richardson et
al., 1995):

Punconf (t) = ppk_unconfe_t/TC (5361)
m.1/3\ %2 (5.3b)
7. =925 mcl/3< Cr )

where 7 is the time constant in ps, which represents the time required for the pressure to drop to 37% of
its initial value.

The rise time is the time between the detonation of the explosive and the initial pressure maximum
of the shock wave. The rise time of an explosion is extremely short compared to that of an air gun array,
and the shorter it is the higher is the potential biological injury (Richardson et al., 1995).

Shock
Wave

Pressure ——«

Fh?sa

Time — Negative T 1
|
|

|

Figure 5.37 Evolution of the sound pressure and gas bubble from an unconfined underwater explosion (from Richardson et al.,
1995)

Eqg. 5.1-5.3 apply close to the unconfined explosion, but are not applicable to long ranges. The limiting
range of applicability of the experimental equations is given by (Rogers, 1977):

T = 4.76m /3 (5.4)

where 7, is the maximum range of applicability of Eq. 5.1-5.3 in m. The equations for the initial maximum
peak pressure and time constant for long ranges are derived by Rogers (1977) from weak-shock theory.

The bubble period or time between the shock wave and the first bubble pulse is given by (Arons, 1948;
Urick, 1983):

0.48Km /3

Ty=— 5.5
» 7 (2, +10)5/6 (5.5)

where Tj, is the bubble period in s, z. the charge depth in m and K a constant that depends slightly on the
type of explosive and is 4.36 for TNT. The bubble frequency is the reciprocal of T,, and decreases as charge
weight m, increases and charge depth z. decreases.

Explosive charges used for decommissioning are not freely suspended in the water, far from the
surface and bottom; instead, explosives are either buried or attached to the structure. The embedment or
confinement of an explosive charge in a borehole results in a significant reduction of the sound level, with
the peak pressure limited to 5% of an equivalent unconfined charge, high frequency components are lost,

125



Review on Existing Data on Underwater Sounds Produced by the Oil and Gas Industry

and the rise time is greatly increased to the order of a millisecond (Nedwell & Edwards, 2004). An empirical
equation to estimate the initial maximum peak pressure of confined explosive charges is given by Nedwell
& Edwards (2004):

0.27

m
Ppk_conf = 0.25 - 107 —T‘i'13 (5.6)

where pyk cony is the maximum pressure of the shock wave in Pa.

5.5.2 Sound Characteristics

The pressure wave produced by the detonation of explosives underwater is characterised by its short
duration, short rise time, high peak pressure and wide frequency bandwidth. Explosions generate sound in
the range of 2-1,000 Hz, with the main energy concentrated in the 6-21 Hz band, and durations lower than
10 ms (Genesis, 2011). The sound levels produced by explosives underwater are the largest of all
anthropogenic sources in the sea, with values of 280 dB re TuPa@1m or even higher (see Table 5.5).
Pressure pulses from high explosives have the potential to cause physical injury or death to marine
mammals (Richardson et al., 1995).

The sound pressure drops rapidly close to the charge due to large heat dissipation of the initial shock
wave. For detonations close to the sea surface, a portion of the energy is lost by pressure release
(Richardson et al.,, 1995). The initial wave front contributes to most of the high frequency content; the
bubble oscillations have lower energy and contribute primarily to the low end of the spectrum. During
decommissioning of a hydrocarbon platform in the Gulf of Mexico, the pressure amplitude of the bubble
pulse from severance detonations was 2-10 times greater than that of the initial shock wave (Genesis, 2011).
Explosive cutting techniques using shock wave focusing require a smaller charge and result in lower
radiated sound levels (Thomsen & Schack, 2013). The peak pressure does not show a strong dependence
on charge weight (see Eq. 5.1 and 5.2), and a low charge can generate a high acoustic output comparable
to somewhat larger charges.

5.5.3 Tables

Table 5.5 Sounds produced by confined and unconfined explosives

Measurement SL Description Reference
[dB re 1uPa] [dB re 1uPa@1m]
0.025 ’\;Ot ?Unzdf 4 | 2269 dB, N/A Perchlorate explosi Nedwel &
<
. (deployed from .9 dBpx erchlorate explosives Edwards, 2004
boat at 5 m depth)
0.2 3 <4 169.3 dBy @ 470 m 302.9 dByy
0.4 1 <4 172.2 dBy @ 470 m 305.8 dByy Context: preliminary study with
2 <4 163.1dBy @ 470 m 296.7 dBp« explosives pre seismic survey
3 <4 1711 dBo @ 470 m 304.7 dBp Area: Poole Bay
. 4 | 2B @4om 279.8 dByy Sediment: clayey silt
168 dBy, @ 470 m 301.6 dBy Charges buried in land, close
to water edge Nedwell &
172.6 dBy @ 470 m 306.2 dB
06 N/A <4 1509 dBpk @19k 3148 dB Pk 2 NOTE: SL calculated using Edwards, 2004
-2 o @ 17 KM -8 dBoi TL~50l0g;or, quoted by Nedwell. For
N/A <4 173.9 dBy @ 470 m 307.5 dByi comparison, the reviewer applied
145.4 dBy @ 1.9 km 309.3 dBy linear-square fitting to this data,
N/A <4 1921 dByy @ 470 m 325.7 dBy obtaining a received level
146.6 dBy @ 1.9 km 310.5 dBy dependence with range of
08 15 <4 | m22dB,@470m 305.8 dByy RL = 2696 - 37.2l0g1(R)
1 N/A <4 171.6 dByy @ 470 m 305.2 dByy
0.5 N/A 60 N/A 267 dBy?
2 N/A 60 N/A 271 dBy” TNT charge Thomsen &
N/A Broadband 50-6.3k Hz 1/3 oct. Schack, 2013;
14 N/A N/A N/A 278 dByk Peak frequencies “20, 512, %6 Hz Richardson, 1995
20 N/A 60 N/A 279 dBy €
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Table 5.5 Sounds produced by confined and unconfined explosives (cont., part 2)

Reference

Measurement SL Z, [m]

Description

[dB re 1uPa]

[dB re 1uPa@1m]

~190 dBy @ 1km N/A 6
Charges placed 196.7 By @ 1km
1 on the seabed, 22 204.3 dBp @ 1km
not buried 203.2 By @ 1km N/A 12
201.6 dBy @ 1 km
194 dBy @ 1 km
196.9 dBy @ 1 km
198.5 dBp @ 1km N/A 6 Context: blasting work for land
195.4 dBy @ 1 km . - .
Charges placed reclamation for industrial
194.8 dBy @ 1km R Nedwell &
2 on the seabed, 2 c activities. first set of Edwards, 2004
not buried 195.3 dByc @ 1km measurements (Dec 2000) !
1971 dBy @ 1km N/A 12 Area: Jurong Island, Singapore
195.7 dBy @ T km
197.7 dBy @ 1 km
198.9 dBy @ 1 km
Charges lced 1973 8@ 1k A ¢
4 on the seabed, 22 198.3 dBpk o km
not buried ek m
199.2 dBy @ 1 km N/A 12
200.2 dBy @ 1km
192.9 (209.5) dBy, @ 1.25 kv’ N/A 3 Context: blastmg work for land
reclamation for industrial
Y WA 16 activities. Second set of
Charges placed 186.8 (206.3) dBy @ 1.8 km / , measurements (Mar-Jun 2001) Nedwell & Edwards,
1-4 on the ?eabed, 22 Area: Jurong Island, Singapore 2004
not buried 198.2 (210.0) dBy @ 1 km*® N/A 6 Measurement direction: 250°,
£250°, “140°, “290°
d
172.0 (196.3) dBy, @ 1km N/A 6 *dmean (maximum)
16 227.5dBy @ 75 m N/A
87 226.1dBy @ 125 m N/A
110 224.6 dBy, @ 200 m N/A
84 229.9 dBy @ 300 m N/A .
Context: wellhead removal using
91 231.9 dBy @ 300 m N/A explosives. Piles 1-5 m high,
108 223.3 dBy @ 400 m N/A buried 2-3 m. 45 kg charge of
high explosive liquid
25 2111 dBy @ 575 m N/A .
Area: North Sea o Nedwell &
30 211.4 By @ 575 m N/A NOTE. Sound levels sw}ml\arto Edwards, 2004;
Few metres under predictions of unconfined
40 the seabed 25 214-215.1 dBy @ 600 m N/A N/A explosives, which reveals that neither Nedwell et a.\,
30 214.3-220 dBy @ 600 m N/A the sediment nor the surrounding 2007; Genesis,
pipe-work acted as effective 2011
35 214.1 dByx @ 600 m N/A confinement
NOTE: linear least-square fitting by
40 2134 dByy @ 600 m NA reviewer to this data resulted in a
25 213.8-225.9 dBy @ 650 m N/A received level dependence with
range of RL = 258.4 - 14.6logyy(R)
30 212.7-221.4 dByy @ 650 m N/A
35 216.7-222.3 dByy @ 650 m N/A
40 214.6-221.2 dBy @ 650 m N/A
30 221.4 dBy @ 800 m N/A
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6 Aircrafts

The characteristics and propagation of aircraft sound in water depend on the air-water transmission
process and the properties of the underwater environment. Airborne sound can propagate in water in four
main ways (Urick, 1972): 1) direct refracted path, 2) multi-path underwater reflection of transmitted sound,
3) surface-travelling wave, 4) scattering from a rough sea surface (see Figure 6.1).

In the air-water interface there exists a critical angle of incidence above which the sound wave is totally
reflected; its value is given by Snell’s law and is close to 13°, relative to the normal. Rough sea states increase
the area of sea surface with appropriate orientation for the transmission of airborne sound into the water.
The sea surface roughness enhances the air-water transmission at grazing angles, increasing the sound
levels between 3-7 dB in the direction of wave travel, but also reduces sound levels by 3-5 dB in the region
below the source, where the strongest sounds are normally found under calm sea states. The effect of
waves is noticeable at frequencies higher than 150 Hz; for lower frequencies the sea surface is effectively
flat (Richardson et al., 1995).

Level and duration of the sound received underwater from a passing aircraft depend on several
factors, including acoustic strength and aspect of the aircraft, range, surface conditions, receiver depth,
water depth and bottom characteristics. The amount of acoustic energy being transmitted into the water
depends on the altitude of the aircraft and sea state. For an aircraft that passes directly overhead, sound
levels decrease with increasing source altitude and receiver depth; however, for an aircraft not directly
overhead, sound levels can be higher at deeper receiver depths.

Airborne
Noise Source

Limiting Ray

Sea

Surface  Transmitted
Ray Paths

Surface
Scatter

\ Direct
S Y

F.t:."mzn\ f \\ f <

\ + Bottom-

Reflected

L

Figure 6.1 Air-water propagation paths for airborne noise from an aircraft (from Richardson et al., 1995).

Receiver

Water depth and bottom properties also have a strong effect on level, frequency content and duration of
the underwater sound produced by an aircraft. Horizontal sound propagation is better in shallow waters,
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especially when the seabed is highly reflective. The multiple underwater reflections contribute to increase
the generally short duration of a passing aircraft and also the distance at which the aircraft sound becomes
undetectable. The duration of the noise event in water also tends to increase with the altitude of the aircraft.

Aircraft take-off and climb tend produce higher sound levels, generally between 5-15 dB, than those
during cruise or approach.

The concept of source level or sound level at T m is not very meaningful in the case of airborne sound
transmitted into water, since the propagation of sound takes place in two media. The source level in the
tables of aircraft noise (see Table 6.1) is included for comparison purposes and is defined as the sound level
in air at T m from the aircraft, calculated by Richardson et al. (1995) using the method of Young (1973).

6.1 Sound Characteristics

Aircrafts are powered by either reciprocating (piston) or turbine engines. Both types of engine can drive
propellers or helicopter rotors, but turbine engines can additionally be used for jet propulsion (i.e. turbojet
and turbofan).

Reciprocating engine sounds are dominated by a series of harmonics associated with the firing rate

of the engine’s cylinder, with the fundamental frequency f, given by (Richardson et al., 1995):
_rpm-N
¢ 60-M

(6.1)

where rpm is the turning rate of the engine in revolutions per minute, N the number of cylinders, and M
the number of revolutions per cylinder and firing. For example, in a four-stroke engine, which results in
two revolutions per firing and cylinder (M = 2), with six cylinders (N = 6) and 2000 rpm, the fundamental
frequency would be 100 Hz.

In propeller-driven aircrafts, the propeller or main and tail rotors are the main source of noise. Their
blades produce the dominant tones in the spectrum; the fundamental frequency of the turning propeller
or rotor f;, can be calculated with the following simple formula (Richardson et al., 1995):

_rpm-B
760

(6.2)

where rpm is the turning rate of the blade in revolutions per minute and B is the number of blades. For
example, a three-bladed propeller turning at 3000 rpm produces a tone of 150 Hz; in a helicopter with
two-bladed main and tail rotors turning at 300 and 1620 rpm, the respective fundamental tones are 10 and
54 Hz.

There may be additional tones associated with other sound generating mechanisms in the engine
and rotating parts. The Doppler shift effect, caused by the relative speed between source and receiver, will
also alter the frequency of these tones.

Dominant tones in helicopters and fixed-wing, propeller-driven aircrafts are associated with blade rate
and are generally below 500 Hz. Helicopters produce sound that is dominated by frequencies below 50
Hz, tend to produce a higher number of tones and are noisier than similar fixed-wing aircraft (~10 dB
higher). The sound radiated by helicopters is also more intense forward than backward. In propeller-driven
aircrafts, the fundamental and second harmonic of the propeller-blade rate dominate. In general, large
aircrafts tend to produce higher sound levels than smaller ones (Richardson et al., 1995).

Jet aircrafts lack rotors and propellers, which results in a sound spectrum that is not dominated by
low frequency tones and is broadband in nature, with frequency content extending up to 5 kHz (Richardson
et al., 1995; Blackwell & Greene, 2002). The high frequency content is dominated by the blade-rate tones
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from the turbine engine, characterised by frequencies ranging from a few hundred Hz to above 1 kHz. The
fundamental frequency of the blade-rate of a turbine engine f;, is obtained from Eq. 6.2. The jet mixing
sound contributes to the lower end of the spectrum. High performance military jets are extremely noisy,
with sound levels significantly higher than conventional jet aircrafts above 150 Hz (Blackwell & Greene,
2002). Additionally, older jet transport aircrafts are noisier than those with new generation engines
(Richardson et al,, 1995). Figure 6.2 shows the spectrum of four types of commercial and military jet aircrafts
(see also Figure 6.4, right).

3
S

Sound Level [dB re 1;:/Pa@ 120-610 m]

=== Boeing 747 (Jel Aifiner)
~ = Boeing 737 (Jet Aidiner)
-------- DC-10 (Jet Airliner)

——— F-15 Eagle (Jet Fighter)

-
<
T

50 L L L . I L L .
315 83 125 250 500 1000 2000 4000 8000 16000

Frequency [Hz]

Figure 6.2 Third-octave band noise spectra from four types of commercial and military jet aircrafts at overflight distances between
120-610 m (after Blackwell & Greene, 2004).

Aircrafts flying at a higher speed than the speed of sound in air produce an instantaneous, low-frequency
pressure pulse known as sonic boom. In a sonic boom, an initial shock wave is followed by a relaxation
period and an abrupt return to ambient pressure. Most of the energy in a sonic boom is contained within
the first 100 Hz (50-300 Hz), with durations of tens to several hundreds of milliseconds. The high acoustic
pressure generated on the sea surface decreases rapidly with increasing depth (Richardson et al., 1995).

. 100 100 100
I
: A B
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Figure 6.3 Power spectral density of aircraft noise during overflights by: A) helicopter Bell 212; B,C) two fixed-wing aircrafts.
Tones in A and C are related to propeller rotor, and tones in B to piston firing rate (from Richardson et al., 1995).
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Figure 6.4 Third-octave band noise spectra from three categories of aircraft: helicopter (left), propeller-driven (centre) and jet
(right). The sound levels are estimated at the water surface from aircraft overflight at 300 m altitude. TO = takeoff or climb, Cr =
cruise, A/B afterburners and mil = maximum without afterburner (from Richardson et al., 1995).
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A.l Other Sounds

The current appendix includes three tables with data from measurements made on acoustic sources that
are not related to the oil and gas industry. The tables contain information on military, industrial, natural
and biological sounds.

Table A.1 Sounds produced by military and industrial acoustic sources

Source SL Signal Description Reference
(Model) [dB re TuPa@1m] Characteristics
Underwater
Nuclear Device 328 dBime T=1000s 30 kt charge IACMST, 2006
3 . T=25 Hildebrand, 2009;
Ship Shock Trial 304 dBns FR-os = 0.5-50 Hz 4.5 t charge IACMST, 2006
Torpedo . i
(MK-46) 289 dByms FR.1048 = 10-200 Hz 44 kg explosive Hildebrand, 2009
T=6-100 s
Military Sonar 235 dB DC =10 % ?Level emitted by one projector |  Hildebrand, 2009;
(SURTASS/LFA ) s dBrmSa FR-10d8 = 100-500 Hz (the system uses a vertical array | |ACMST, 2006;
ms Peak frequency 250 Hz of typically 18 projectors) ICES, 2005
Beam width 30° x 360°
Military Sonar T=052s IACMST, 2006;
AN/S };53A c 235 dBims DC=6% N/A D'Amico &
AN/Q ©) f=2633kHz Pittenger, 2009
Military Sonar 223 dB T=1-2s A D'Amico &
(AN/SQS 56) ms f=6875, 82kHz Pittenger, 2009
T=1200s IACMST, 2006;
Research Sonar 195 B DC=8% A Richardson et al,
(ATOC) me BW._1og8 = 37.5 Hz 1995; D'Amico &
Peak frequency 75 Hz Pittenger, 2009
T=120s
Research Sonar DC = Il
195 B, ¢ = sma N/A IACMST, 2006
(RAFOS float ) BW_1og8 = 100 Hz
Peak frequency 250 Hz
Military Sonar 000 chard |
(Search and > 230 dByms T = 4710005 N/A Richardson et al,
S i ) Peak frequency 2-57 kHz 1995
urveillance
Military Sonar 220 d T=130s NA Richardson et al,
>
(Mine Avoidance) e Peak frequency 25-500 kHz 1995
Tidal Farm 165-175 dBms Continuous noise N/A Cluster Maritime
Francais, 2014
142 4B Conti X Mai 30-200 H Cluster Maritime
ms ontinuous noise ain energy z Francais, 2014
Wind Farm

137 dByms @ 312 HZ®

Continuous noise

2TL = 15logsor assumed by
reviewer (measurement 111 dB,
@ 50 m, 312 Hz)

Fristedt et al., 2001

Table A.2 Sounds produced by natural events

Source

SL

Description

[dB re TuPa@1m]

Reference

Magnitude 4.0 on Richter scale

Sea Surface

Undersea Earthquake 272 dByms ) ) Heathershaw et al, 2001
Energy integrated over 50 Hz bandwith
Seafloor Volcanic ) )
i 255 dBms Massive steam explosion Heathershaw et al, 2001
Eruption
Lighning Strike on
9 9 250 dByms N/A Heathershaw et al, 2001
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Table A.3 Sounds produced by cetaceans

pe e OCad d 0O ed d ge
e ame Bi@ 1y Overall Dominant
tonal moans 128-178 dBms 25-900 100-400
Bowhead Whale Richard ¢ al 1995
(Balaena mysticetus) pulses 152-185 dByme 25-3.5k N/A ichardson et al,
song 158-189 dByms 20-500 < 4k
S Right Whale )
X pulses 172-187 dBms 30-2.2k 160-500 Richardson et al, 1995
(Eubalaena australis)
Gray Whale 20-200,
moans 185 dB, 20-1.2k Richard: t al, 1995
(Eschrichtius robustus ) ms 700-1.2k ichardson et a
song 144-174 dBys 30-8k 120-4k
shrieks 179-181 dBs N/A 750-1.8k
horn blasts 181-185 dB,pms N/A 410-420
moans 175 dB, 20-1.8k 35-360
Humpback Whale . - Richardson et al, 1995
(Megaptera novaeangliae) grunts 190 dBims 25-1.9k N/A
pulse trains 179-181 dB, s 25-1.25k 25-80
underwater blows 158 dBs 100-2k N/A
fluke & flipper slap | 183-192 dBps 30-1.2k N/A
moans,
Fin Whal d 160-186 dBms 14-118 20
ownsweeps
n ale WISWEEp Richardson et al, 1995
(Balaenoptera physalus ) moans, tones,
155-165 dByms 30-750 N/A
upsweeps
Blue Whale :
moans 188 dBms 12-390 16-25 Richardson et al, 1995
(Balaenoptera musculus )
Bryde's Whale
M . moans 152-174 dBims 70-245 124-132 Richardson et al, 1995
(Balaenoptera brydei)
downsweep 165 dBs 60-130 N/A
Minke Whale moans, grunts 151175 B e 60-140 60-140 Richardson et al, 1995
(Balaenoptera acutorostrata)
moans, grunts 151 dBrms 3.3k-20k < 12k
Sperm Whale ) 2k-4k,
P clicks 160-180 dByps 100-30k Richardson et al, 1995
(Physeter macrocephalus ) 10k-16k
Killer Whale
; pulsed calls 160 dByms 500-25k 1k-6k Richardson et al, 1995
(Orcinus orca)
Bottlenose Dolphin
P whistles 125-173 dBys 800-24k 3.5k-14.5k Richardson et al, 1995

(Tursiops truncatus)
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A.ll Noise & Absorption in Sea Water
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Figure A.1 Absorption coefficient in sea water at 4 °C, 1 atm, salinity 35 ppt and pH 8.0 (from Fisher & Simmons, 1977).
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pertinent combination of ambient noise components (from Wenz, 1962).
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A.lll Photos from Vessels

Cruise Ships

Figure A.3 Cruise ship Dawn Princess (from Figure A.4 Cruise ship Norwegian Sky (from
wikipedia.org) wikipedia.org)

Figure A.5 Cruise ship Holland America Statendam (from Figure A.6 Cruise ship Norwegian Wind (from Kipple,
wikipedia.org) 2000).

Figure A.7 Cruise ship Crystal Harmony (from Kipple, Figure A.8 Cruise ship Universe Explorer (from
2000). www.ssmaritime.com).
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Bulk Carriers

Figure A.9 Bulk Carrier Overseas Harriette (from Figure A.10 Bulk Carrier Peter R. Cresswell
www.shipspotting.com). (from www.marinetraffic.com).

Figure A1 Bulk Carrier Emerald Bulker (from Figure A.12 Bulk Carrier Golden Ace, MMSI 576915000
www.shipspotting.com). (from www.shipsnostalgia.com).

Figure A.13 Bulk Carrier Red Lotus, MMSI 371978000 Figure A.14 Bulk Carrier Pansolar, MMSI 240537000
(from www.marinetraffic.com). (from www.shipspotting.com).

Figure A15 Bulk Carrier Fortune Era, MMSI
440223000 (from www.marinetraffic.com).
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Open Hatch Cargo

Figure A.16 Open hatch cargo Saga Frontier, MMSI Figure A.17 Open hatch cargo Star Grip, MMSI
477657600 (from www.marinetraffic.com). 257313000 (from www.marinetraffic.com).

Figure A.18 Open hatch cargo San Sebastian, MMSI Figure A.19 Open hatch cargo Hardanger, MMSI
477653500 (from www.marinetraffic.com). 563496000 (from www.marinetraffic.com).

Container Ships

Figure A.20 Container ship CSL Virginia, MMSI Figure A.21 Container ship Ever Reward, MMSI
636090869 (from www.shipspotting.com). 352919000 (from www.marinetraffic.com).

Figure A.22 Container ship Halifax, MMSI Figure A.23 Container ship MOL Express, MMSI
235007500 (from www.vesselfinder.com). 353287000 (from www.shipspotting.com).

151


http://www.marinetraffic.com/
http://www.marinetraffic.com/
http://www.marinetraffic.com/
http://www.marinetraffic.com/
http://www.marinetraffic.com/
http://www.shipspotting.com/
http://www.shipspotting.com/
http://www.vesselfinder.com/

Review on Existing Data on Underwater Sounds Produced by the Oil and Gas Industry

Vehicle Carriers

| (- 1

Figure A.24 Vehicle carrier Dong Fang Gao Su, Figure A.25 Vehicle carrier Heijin, MMSI
MMSI 413075000 (from www.fleetmon.com). 353788000 (from www.marinetraffic.com).

Figure A.26 Vehicle carrier Liberty, MMSI Figure A.27 Vehicle carrier United Spirit, MMSI
232872000 (from www.marinetraffic.com). 636011280 (from www.marinetraffic.com).
Tankers

Figure A.28 Crude oil tanker NS Century, MMSI Figure A.29 Crude oil tanker Chemtrans Sky,
636012853 (from www.marinetraffic.com). MMSI 636090885 (from www.marinetraffic.com).

Figure A.30 Oil products tanker Star Express, Figure A.31 Oil products tanker Nave Ariadne, MMSI
MMSI 371604000 (from www.marinetraffic.com). 319768000 (from www.marinetraffic.com).
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Figure A.32 Oil products tanker Yayoi Express, Figure A.33 Chemical tanker Theresa Success,
MMSI 371924000 (from www.marinetraffic.com). MMSI 636010515 (from www.marinetraffic.com).

Medium-Size Vessels

Figure A.34 Research vessel Gilavar (from Funk et Figure A.35 Survey vessel Geo Arctic (from Beland et
al., 2008). al., 2013).

Figure A.36 Survey vessel Mt Mitchell (from Reiser et Figure A.37 Survey vessel Gulf Provider (from
al., 2010). Funk et al., 2008).

Figure A.38 Survey vessel Mt Mitchell (from Funk et al., Figure A.39 Survey vessel Alpha Helix (from

2008). Funk et al., 2008).
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Figure A.40 Survey vessel Peregrine (from Aerts et
al., 2008). www.marinetraffic.com).

Figure A.42 Pusher tug henry Christoffersen (from Funk et Figure A.43 Landing craft Arctic Wolf
al., 2008). (from Aerts et al., 2008).

Figure A.44 Support vessel Torsvik (from Figure A.45 Support vessel Norseman Il (from
Funk et al., 2008). Funk et al., 2008).

Figure A.46 Support vessel Theresa Marie Figure A.47 Bathymetric survey boat American
(from Funk et al., 2008). Islander (from Funk et al., 2008).
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Icebreakers

ol

Figure A.48 Icebreaker Polar Prince (from Figure A.49 Icebreaker Jim Kilabuk (from Funk et
Beland et al., 2013). al.,, 2008).

Small Vessels, Boats and Hovercrafts

Figure A.50 Survey vessel Hook Point (3 from left, Figure A.51 Tug vessel Alaganik with Hook Point
from Aerts et al., 2008). boat (from Aerts et al., 2008).

Figure A.52 Survey vessel Wiley Gunner Figure A.53 Crew vessel American
(from Hauser et al.,, 2008). Discovery (from Hauser et al., 2008).

Figure A.54 Landing craft Maxime (from Funk et Figure A.55 Crew vessel Qayagq Spirit (from Aerts
al.,, 2008). et al., 2008).
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Figure A.56 Crew vessel Gwydyr Bay Figure A.57 Support vessel Mariah B (from Aerts
(from Aerts et al,, 2008). et al., 2008).

Figure A.58 Bow picker Rumple Minze Figure A.59 Bow picker Canvasback
(from Aerts et al., 2008). (from Aerts et al., 2008).

Figure A.60 From left to right: crew vessel Qayaq Spirit, support vessel Mariah B, and
bowpickers Cape Fear, Rumple Minze, Canvasback and Sleep Robber (from Aerts et al., 2008).

Figure A.62 Inflatable boat DIB (from Hauser et

Figure A.61 Bow picker Sleep Robber (from
Aerts et al., 2008). al., 2008).
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Figure A.63 Aluminium boat Reliance (from Figure A.64 Jet boat Storm Warning (from
Hauser et al., 2008). McPherson & Warner et al., 2012).

Figure A.65 Jet boat Resolution (from McPherson & Warner, Figure A.66 Propeller boat Margarita (from
2012). McPherson & Warner, 2012).
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Figure A.68 Cabin cruiser Talus (from Kipple & Gabriele,

Figure A.67 Cabin cruiser Serac
(from Kipple & Gabriele, 2003). 2003).

Figure A.69 Landing craft Capelin (from Figure A.70 Cabin workboat Sigma T
Kipple & Gabriele, 2003). (from Kipple & Gabriele, 2003).
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Figure A.71 Cabin cruiser Arete (from Kipple & Figure A.72 Cabin cruiser Rebound (from Kipple &
Gabiriele, 2003). Gabriele, 2003).

Figure A.73 Open skiff Sand Lance (from Kipple & Figure A.74 Open skiff Mussel (from Kipple & Gabriele,
Gabriele, 2003). 2003).

Figure A.75 Open skiff Ogive (from Kipple & Figure A.76 Open skiff Gumboot (from Kipple
Gabriele, 2003). & Gabriele, 2003).

Figure A.77 Open skiff Alaria (from Kipple Figure A.78 Open skiff Ursa (from Kipple &
& Gabriele, 2003). Gabriele, 2003).
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Figure A.79 Hovercraft Griffon 2000TD (from
wikipedia.org).
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