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Abstract
Marine predators frequently exhibit consistency in foraging behaviors despite the dynamic nature of marine ecosystems, 
which has the potential for ecological and evolutionary implications depending on the timescale at which it persists. We 
examined behavioral consistency in movements and diving behavior of adult female California sea lions (Zalophus califor-
nianus), which are abundant, generalist central-place foragers inhabiting an ecosystem characterized by small- and broad-
scale oceanographic variability. We used biologging devices to measure repeatability of behavior within a season and 
stable isotope analysis of whiskers to quantify behavior across a 2-year period associated with anomalous environmental 
conditions that affected prey availability. Sea lions were significantly repeatable in all variables across multiple timescales 
(Radj = 0.26–0.82), although repeatability estimates were generally higher for variables related to characteristics of individual 
dives (e.g., dive depth) than those that described dive bouts (e.g., bout duration) or spatial use (e.g., volume of 3D utilization 
distribution). These differences may result from the fact that diving behaviors vary with prey type, whereas spatial use and 
bout variables may reflect the foraging success within prey patches or movement among patches. There was variation in how 
predictable individual sea lions were in their diving behaviors, which was largely unrelated or negatively related to foraging 
site fidelity. The strength of behavioral consistency decreased with time yet persisted across the 2-year period, suggesting 
that while sea lions alter their behavior in response to environmental change, the behavioral flexibility of individuals may 
ultimately be constrained by consistency.

Introduction

Foraging behavior affects the survival and reproductive suc-
cess of organisms, and has the potential to shape community 
and ecosystem structure through a myriad of mechanisms 
(Croll et al. 2005; Hughes et al. 2013; Ripple et al. 2014; 
Roman et al. 2014). Intraspecific variability in foraging 

behavior has become a major focus for ecologists in recent 
decades, as it is increasingly recognized that individual vari-
ation in diet is both widespread and ecologically important 
(Bolnick et al. 2003; Araújo et al. 2011; Ceia and Ramos 
2015). The occurrence and persistence of ‘individual spe-
cialization’ or ‘behavioral consistency’ may arise due to a 
multitude of ecological, morphological, physiological, and 
behavioral processes, and can encompass a broad array of 
foraging behaviors that also describe habitat use and how 
individuals find, capture, and consume prey (Bolnick et al. 
2003; Tinker et al. 2008; Knudsen et al. 2010; Araújo et al. 
2011; Patrick and Weimerskirch 2014b). Within the forag-
ing ecology literature, behavioral consistency is typically 
evaluated in an ecological framework, where the focus is on 
describing the heterogeneity of resource use within popula-
tions not attributable to age, sex, or morphology and the eco-
logical consequences of this individual niche specialization 
(Bolnick et al. 2003). The field of animal behavior provides 
an alternate framework that largely focuses on explaining 
the limited behavioral flexibility of some individuals and 
the persistence of behavioral consistency through time and 
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across contexts (‘animal personalities’; Sih et al. 2004; Réale 
et al. 2007; Bell et al. 2009). These two approaches share a 
commonality as they converge on the concept that individual 
variation in behavior is of ecological and evolutionary inter-
est (Dall et al. 2012).

The foraging behavior of central-place foragers, such 
as colonially breeding seabirds and otariids, is constrained 
by the need to return to the rookery in a timely manner to 
deliver prey or milk to dependent offspring. Foraging behav-
ior is critical during this energetically expensive time period, 
as energy shortfalls can adversely affect offspring growth 
and lead to reproductive failure, even at very short time-
scales (Costa et al. 1989; Davoren and Montevecchi 2003; 
Costa 2008; Ballance et al. 2009). Dietary specialization 
and foraging site fidelity are common among central-place 
foragers, with populations often comprised of behavioral 
‘generalists’ that have a broad niche and consume an array 
of prey resources and ‘specialists’ whose diet is often an 
ordered and predictable subset of the diet of generalists 
(Hamer et al. 2001; Woo et al. 2008; Ratcliffe et al. 2013; 
Harris et al. 2014; Patrick and Weimerskirch 2014b; Bay-
lis et al. 2015a; Patrick et al. 2015; Wakefield et al. 2015; 
Kernaléguen et al. 2016). Diving behavior often reflects diet 
and/or habitat use, leading to the assumption that diet and/
or foraging site fidelity dictates consistency in dive behavior 
(Staniland et al. 2004; Tinker et al. 2008; Elliott et al. 2008; 
Villegas-Amtmann et al. 2008; Woo et al. 2008; Kuhn et al. 
2014; Arthur et al. 2016). Site fidelity does not always drive 
consistency in diving behaviors of central-place foragers 
(Wakefield et al. 2015), and given the influence of diving 
behavior on energy expenditure (Arnould et al. 1996; Costa 
and Gales 2000; McHuron et al. 2018), further study is war-
ranted to quantify the relationships between consistency in 
the different components of foraging behavior.

The timescale at which measurements are collected influ-
ences the strength of behavioral consistency, which can 
result from sampling bias or reflect the different underlying 
processes driving consistency (or lack thereof) at multiple 
timescales (Bolnick et al. 2002; Woo et al. 2008; Harris 
et al. 2014; Novak and Tinker 2015; Wakefield et al. 2015; 
Kernaléguen et al. 2016; Camprasse et al. 2017). Because 
variation in resource use affects an individual’s internal state 
and how it interacts with the environment, complementary 
methods that provide estimates of consistency at differ-
ent timescales are important to understand the ecological 
implications that may arise from this variation. Biologging 
devices are commonly used to quantify the foraging behavior 
of marine species, resulting in fine-scale measurements of 
behavior such as at-sea locations, diving behavior, and asso-
ciations with oceanographic features (Hazen et al. 2012). 
These measurements are typically limited to very short time-
scales (hours to < 1 year), requiring the use of alternate tech-
niques to quantify foraging behavior of individual animals 

across multiple years. For otariids, stable isotope analysis of 
whiskers has been instrumental in this regard because whisk-
ers are slow growing (0.05–0.19 mm day−1) with retention 
times up to 8+ years (Cherel et al. 2009; Kernaléguen et al. 
2015; Rea et al. 2015; McHuron et al. 2016b), and isotope 
values remain unchanged once incorporated into the tissue. 
Whiskers can thus be sub-sectioned to provide a longitudinal 
record of foraging behavior across a substantial proportion 
of an individual’s lifespan, allowing researchers to address 
questions related to ontogeny, niche specialization, and tem-
poral variation in individual behavior (Cherel et al. 2009; 
Lowther et al. 2011, 2013; Baylis et al. 2015a; Kernaleguen 
et al. 2016).

The goal of this study was to examine consistency in a 
suite of foraging behaviors at multiple timescales for adult 
female California sea lions (Zalophus californianus), an 
abundant and generalist central-place forager inhabiting 
coastal and offshore environments of the California Current 
System (CCS). Adult females use multiple diving strategies 
to target a diversity of prey species (Orr et al. 2011; McHu-
ron et al. 2016a), indicating that individuals may have con-
siderable flexibility to behaviorally adapt to environmental 
changes. Although this population is believed to be at or 
near carrying capacity (Laake et al. 2018), there has been 
a steady decrease in pup growth rates over the last decade 
that has been attributed to a decline in energy-rich forage 
fish (McClatchie et al. 2016a), raising questions about how 
sea lions will adapt to environmental variability and change. 
We combined data from biologging devices and stable iso-
tope analysis of whiskers to determine (1) the strength and 
persistence of individual variation in foraging behavior at 
multiple timescales (weeks to years), (2) whether behavio-
ral consistency varied among different behavioral categories 
(diving, spatial use, bout characteristics) and timescales, and 
(3) whether individuals varied in the strength of behavioral 
predictability and which factors might drive this variation. 
Here we define consistency as occurring when individuals 
within a population differ from each other but exhibit rela-
tively low within-individual variability in a given behavior 
that is largely irrespective of the contribution of extrinsic or 
intrinsic factors to this pattern (Wilson 2018).

Materials and methods

Adult female California sea lions were captured in Novem-
ber of 2005–2008 at San Nicolas Island (32.2°N, 119.5°W) 
using custom hoop nets. San Nicolas Island is one of the 
two largest California sea lion rookeries, with upwards 
of 20,000 pups born each year (Lowry et al. 2017). Once 
captured, females were sedated with gas anesthesia using a 
portable field vaporizer (Gales and Mattlin 1998). Satellite 
tags that collected either ARGOS or GPS-quality locations, 
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time-depth recorders, and a VHF tag were attached to the 
dorsal midline of each animal using a quick setting epoxy. 
Time-depth recorders were programmed to collect depth and 
temperature data at 1-, 2-, or 4-s intervals (depending on the 
year). Tags were mounted on a neoprene base and attached 
to mesh netting with zip-ties. Standard length and mass were 
also measured at initial capture. Sea lions were released and 
subsequently recaptured after approximately 2 months to 
recover instruments and archived data.

Whiskers were collected from ten adult females captured 
at San Nicolas Island in November of 2014 as part of an 
unrelated study using the methods described above (McHu-
ron et al. 2018). A single whisker (typically one of the long-
est) was plucked from the whisker bed while the sea lion was 
under gas anesthesia. Whisker samples were stored in paper 
envelopes at room temperature until analysis.

Dive and movement behavior

Location data were processed with a speed and angle filter 
to remove erroneous locations (12 km h−1 and 160º, IKNOS 
toolbox, Y. Tremblay unpublished). Hourly at-sea locations 
were interpolated using either a correlated random walk 
(R package crawl, Johnson et al. 2008; ARGOS locations) 
or linear interpolation (GPS locations). The majority of 
ARGOS locations (> 85%) were of class A or better, cor-
responding to error estimates of < 5 km (Costa et al. 2010). 
Dive data were subsampled to 4-s intervals to standardize 
across years and processed using a custom Matlab program 
(IKNOS toolbox, Y. Tremblay unpublished) to obtain sum-
mary statistics for each dive, including environmental data 
associated with each dive [temperature at surface (SST) 
and thermocline depth]. Interpolated locations were used 
to identify dive locations using a custom Matlab script (P. 
Robinson unpublished). California sea lions exhibit periods 
of intensive diving while at sea (diving bouts), which can be 
associated with either transit or foraging behavior. We used 
a modification of the method described in Boyd et al. (1994) 
to identify these bouts and exclude potential transiting dives 
(R. Beltran unpublished; McHuron et al. 2016a). The mini-
mum criterion for a bout was a minimum of five dives with 
a maximum surface interval of 10 m or less between dives. 
Bouts were excluded from analysis if the mean dive depth of 
the bout was less than 8 m (Melin et al. 2008).

The location and dive data were used to calculate 15 vari-
ables that described the foraging behavior of sea lions on 
each foraging trip to sea. A foraging trip was defined as any 
trip to and from San Nicolas Island that lasted a minimum 
of 1 day. This criterion was chosen for two reasons: (1) to 
ensure that each trip encompassed both day and night so that 
all behaviors were represented for each foraging trip per sea 
lion, and (2) because trips < 1 day often had very few satel-
lite locations associated with them, resulting in inaccurate 

representations of spatial use. Trips < 1 day occurred infre-
quently for most sea lions; 78% of sea lions had ≤ 2 short 
trips that comprised an average of < 5% of all foraging trips 
per individual.

Foraging behaviors were classified into one of three gen-
eral categories: spatial use, characteristics of individual 
dives (hereafter referred to as diving behavior), and bout 
characteristics. Spatial variables included the duration of 
each foraging trip (identified using the wet–dry sensor on 
the time-depth recorder; days), the maximum straight-line 
distance traveled from the rookery (km), and three-dimen-
sional 50 and 95% kernel density utilization distributions 
(3D-UD, km3) of hourly mean dive depths and their spatial 
location using a two-stage plug-in method (R package ks, 
Duong 2018) as described in Simpfendorfer et al. (2012) 
and Cooper et al. (2014). Dive behaviors were calculated by 
averaging all dives across a foraging trip and included the 
percentage of time spent diving, maximum day and night 
dive depths (m), the percentage of time spent diving during 
the day and night, the percentage of dives that were within 
the water column and < 200  m (epipelagic) or ≥ 200  m 
(mesopelagic; McHuron et al. 2016a), and a diel index that 
described the change in day–night dive depth (McHuron 
et al. 2016a). Bout characteristics included the mean inter-
bout interval (h), mean bout duration (h), and mean number 
of bouts per day.

Isotope analysis of whiskers

Whiskers were sonicated for 15 min in de-ionized water and 
rinsed with petroleum ether to remove any exogenous debris. 
The total length of whiskers was measured before section-
ing each whisker into ~ 3-mm segments starting at the base. 
Subsections from the proximal end of each segment were 
weighed into tin boats (0.5 ± 0.05 mg) and analyzed for C 
and N stable isotopes using a Carlo-Erba NE2500 CHNS-O 
Analyzer coupled to a Thermo Finnigan DELTAplus XP 
Isotope Ratio Mass Spectrometer via a Thermo Finnigan 
ConFlo III at the University of California Santa Cruz Stable 
Isotope Laboratory. Results are presented in delta (δ) nota-
tion in per mil (‰) relative to either Vienna-Pee Belemnite 
Limestone (C) or atmospheric N2 (N). Precision of an inter-
nal laboratory standard was 0.05‰ for δ13C and 0.07‰ for 
δ15N.

Individual whisker growth rates were estimated as 
described in ESM1 and used to determine the amount of 
foraging time integrated into each segment, which ranged 
from 25 to 47 days. We excluded the first whisker segment 
from all analyses because initial plots of δ13C and δ15N 
values revealed that isotope values in the segment closest 
to the base were noticeably different from nearby whisker 
segments, a pattern that has also been found in whiskers of 
other pinnipeds (Zhao et al. 2006; Hückstädt et al. 2012). 
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We used biologging data and stable isotope values in plasma 
collected across a single foraging trip from sea lions tagged 
in 2014 as part of an unrelated study (McHuron et al. 2018) 
to understand how variation in whisker isotope values was 
related to behavioral variables (ESM2).

Population‑level behavioral consistency

The repeatability of each behavioral variable (R) was calcu-
lated using the following equation:

where �2
�
 is the between-individual variability and �2

�
 is the 

residual error (within-individual variability; Dingemanse 
and Dochtermann 2013). We used the R package rptR to 
calculate the repeatability of each behavior, including the 
significance of repeatability estimates using permutation 
tests and bootstrapped 95% confidence intervals (Stof-
fel et al. 2017). Separate models were run for each vari-
able, with year as a fixed factor and individual as a random 
effect. Because of the inclusion of year as a fixed effect, 
the resulting repeatability estimates are considered adjusted 
repeatabilities (Radj), representing the repeatability as if all 
measurements were taken at a fixed time (Nakagawa and 
Schielzeth 2010). The repeatability of whisker δ13C and δ15N 
values were estimated using the same approach, but instead 
of including time as a fixed effect, we limited our analyses 
to include isotope values within the 2 years prior to collec-
tion to ensure the behavior of individuals was represented 
by similar time periods. Repeatability measurements range 
from 0 to 1, with greater repeatability as values approach 
one. We also assigned a qualitative measure of repeatabil-
ity based on numerical values as described in Harris et al. 
(2014); behaviors with values from 0 to 0.25 had low repeat-
ability, values of 0.25–0.5 were considered repeatable, val-
ues of 0.5–0.75 were moderately repeatable, and behaviors 
with values > 0.75 were considered strongly repeatable.

To examine temporal changes in repeatability, we recal-
culated the repeatability of each behavior using the first 3 
(~ 2 weeks), 6 (~ 1 month), and 10 (~ 2 months) foraging 
trips to sea. Because sea lions varied in their number of 
foraging trips, we limited our estimates of repeatability for 
this analysis to the 16 sea lions that were tracked across at 
least 10 trips to sea. We used linear mixed effects models 
to evaluate whether the number of foraging trips influenced 
the repeatability of behavioral traits (R package lme4, Bates 
et al. 2015). The number of trips (3, 6, or 10), the behavioral 
category (spatial, dive, bout), and the interaction between 
the two were included as fixed factors, and each behavior 
was treated as a random effect to account for the non-inde-
pendence of repeatability estimates within a behavior. The 

R =

�
2
�

�
2
�
+ �

2
�

,

significance of the number of observations was assessed 
using F tests and the Kenward–Roger approximation of 
degrees of freedom (R package afex, Singmann et al. 2018). 
Multiple comparisons were made using Tukey’s HSD tests 
(R package multcomp, Hothorn et al. 2008).

Individual‑level behavioral consistency

Individual repeatability estimates were calculated for each 
behavioral variable using the equation

where �2
�
 is the between-individual variability and �2

i
 is the 

residual variance for individual i. In addition, we calculated 
the individual repeatability of SST and thermocline depth as 
indicators of environmental consistency. Because there were 
often large differences in mean behavioral values among sea 
lions, we natural log transformed all dive and movement 
variables so that the residual variance represented a relative 
instead of an absolute change from each sea lion’s behavioral 
mean.

We ran a principal components analysis on the individual 
repeatability estimates to create a reduced set of uncorre-
lated variables that described suites of behavioral repeat-
abilities (R package FactoMineR, Le et al. 2008). Varimax 
rotation was used on axes with eigenvalues > 1 to clarify 
the contribution of variables to each principal component. 
Pearson’s correlations were used to determine the relation-
ships between each principal component and the original 
variables, with Bonferroni corrections applied to adjust for 
multiple comparisons. Linear models were used to examine 
whether foraging site fidelity, consistency in SST or ther-
mocline depth, year, or mass explained any of the variabil-
ity in principal component scores. The foraging site fidelity 
of each sea lion was estimated by quantifying the pairwise 
overlap in the 95% kernel density utilization distributions 
among foraging trips using Bhattacharyya’s affinity (Fieberg 
and Kochanny 2005). Utilization distributions were created 
using the adehabitatHR package with the ad hoc smooth 
parameter and default grid size (Calenge 2006). Pairwise 
overlap estimates were averaged to create a single index of 
foraging site fidelity per sea lion. We ran all possible com-
binations of models without interactions (separate models 
were run for each variable) and used Akaike Information 
Criterion corrected for small sample (AICc) to inform model 
selection. We considered all models that were within two 
ΔAICc values of the top model.

All statistical analyses were run using R version 3.4.1 
(R Core Team 2017). No comparisons were made between 
individual repeatabilities of short- and long-term behaviors 

R
�

adj.i
=

�
2
�

�
2
�
+ �

2
i

,
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because these two datasets were collected from different 
individuals. Means are presented ± SD.

Results

A total of 32 adult female California sea lions were tracked 
across at least six foraging trips to sea (ESM3—Table S2). 
The mean tracking duration was 62.2 ± 12.0 days, with an 
average of 10 ± 3 trips per sea lion. The total number of trips 
varied among individuals despite similar tracking durations 
because the duration of each trip varied (ESM3—Table S2). 
Stable isotope values in whiskers across the 2-year period 
ranged from − 14.4 to − 16.3‰ for δ13C and 16.1–18.0‰ 
for δ15N. Variation in δ13C values was largely explained by 
how far sea lions foraged from the mainland coast (higher 
values closer to the mainland), whereas variation in δ15N 
was in part explained by diving behavior, mainly the per-
centage of epipelagic dives (higher values with less epipe-
lagic dives; ESM2).

Population‑level repeatability

Repeatability estimates for all variables representing short-
term behavior were significant, but the strength of repeat-
ability varied widely among behaviors (Radj = 0.26–0.82, 
P < 0.01; Fig. 1). Variables characterizing diving behavior 
were generally more repeatable across foraging trips than 
those describing spatial use or bout characteristics. Behav-
ior was also repeatable across longer temporal scales, as 

evidenced by the moderate repeatability of δ15N (R =0.63, 
P < 0.01) and δ13C (R =0.52, P < 0.01) values (Fig. 1).

The strength of repeatability decreased as the number 
of foraging trips included in the analysis increased, but the 
magnitude and specific differences among the discrete peri-
ods (3, 6, or 10 foraging trips) were affected by the behav-
ioral category (interaction term: F (4, 28) = 10.08, P < 0.01; 
Fig. 2). Repeatability estimates of diving behavior were sig-
nificantly different between 3 vs. 10 foraging trips (P <0.01) 
but not 3 vs. 6 trips (P = 0.20) or 6 vs. 10 trips (P = 0.36). In 
contrast, repeatability estimates of spatial behavior and bout 
characteristics differed between 3 vs 6 and 3 vs. 10 foraging 
trips (P < 0.01) but not 6 vs. 10 foraging trips (P = 0.88).

Individual‑level repeatability

There was considerable variation in estimates of individual 
repeatability for all short-term behavioral variables, indicat-
ing that some sea lions were more predictable in their behav-
ior than others (ESM3—Fig. S4). Individual repeatability 
estimates of isotope values showed similar trends across 
the entire 2-year period (δ13C: 0.28–0.75, δ15N: 0.47–0.92), 
although values of sequential whisker segments tended to 
cluster together in isospace for all sea lions (Fig. 3). There 
was no correlation between individual repeatability estimates 
of δ13C and δ15N (r = 0.22, P = 0.55). Individual variation in 
short-term repeatability estimates could be described along 
five principal components primarily associated with spatial 
use (PC 1), night diving behavior (PC 2), bout characteristics 
(PC 3), day diving behavior (PC 4), and the percentage of deep 
dives (PC 5; Table 1). Significant correlations between mean 
values of each behavioral variable and the principal compo-
nents were only present for PC 2; these correlations indicated 

Fig. 1   Repeatability estimates of behavioral traits of adult female 
California sea lions with 95% CI. Behaviors are color coded by cat-
egory (spatial, individual dive characteristics, bout characteristics, 
isotopes), with the 1st three categories representing short-term con-
sistency (2 months; n = 32 sea lions) and the final category represent-
ing long-term consistency (2  years; n = 10 sea lions). Cutoff values 
for qualitative assessments of the strength of repeatability are shown 
with dashed gray lines, corresponding to low, repeatable, moderately 
repeatable, and strongly repeatable behaviors

Fig. 2   Repeatability estimates of behavioral traits for 16 adult 
female California sea lions using three (triangle), six (circle), and 
ten (square) foraging trips to sea. Cutoff values for qualitative assess-
ments of the strength of repeatability are shown with dashed gray 
lines, corresponding to low, repeatable, moderately repeatable, and 
strongly repeatable behaviors



	 Marine Biology  (2018) 165:122 

1 3

 122   Page 6 of 13

that lower repeatability in night diving behavior was associated 
with deep-diving sea lions (Table 1). Linear models indicated 
site fidelity was important in explaining individual variation 
in repeatability for PC 1 and PC 2; however, the direction of 
these relationships was not the same for each principal com-
ponent (Table 2). Sea lions with high site fidelity were more 
repeatable in trip duration, maximum distance traveled from 
the rookery, and the volume of space use than more wide-
ranging individuals (PC 1). In contrast, individual repeatability 
in night diving behaviors decreased with increasing site fidel-
ity (Fig. 4). Year was also included in all top models for PC 

2. Overall, most of the variation in individual repeatability 
estimates remained unexplained, as there were no relationships 
between our explanatory variables and the remaining principal 
components and models for PC 1 and PC 2 explained only 
about 40% of the variability in our data.   

Fig. 3   Isotope values of δ15N and δ13C in sequential whisker seg-
ments of adult female California sea lions, incorporating approxi-
mately 2 years of foraging behavior. Each subplot represents a differ-

ent individual, with darker colors indicative of more recent growth. 
The position of all sea lions in isospace is depicted by gray circles in 
each subplot

Table 1   Principal component loadings with the greatest contribu-
tion (> 0.5) to axes that describe individual variation in repeatability 
estimates of foraging behavior  (top) and correlations between each 
principal component and the original behavioral variables (bottom). 

Loadings or the correlation coefficient (r) are shown in parenthenses 
following each variable. The  proportion of variability explained by 
each axis is shown in parentheses following each component header

PC 1 (36.5%) PC 2 (18.4%) PC 3 (11.3%) PC 4 (7.6%) PC 5 (6.5%)

Loadings
 50% UD volume (0.92) % night dive (0.90) # bouts per day (0.86) Diel index (0.77) % mesopelagic (0.86)
 95% UD volume (0.91) Night depth (0.80) Bout interval (0.76) % day dive (0.75) Day depth (0.53)
 Max distance (0.88) % dive (0.58) Bout duration (0.71) Day depth (0.67)
 Trip duration (0.63) % epipelagic (0.57)

Correlations
 None % mesopelagic (− 0.75) None None None

Night depth (− 0.74)
Bout interval (− 0.67)
Day depth (− 0.64)
% dive (0.62)
# bouts per day (0.60)
Trip duration (0.54)
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Discussion

We detected consistency in foraging behavior across mul-
tiple timescales for adult female California sea lions, a 
central-place forager inhabiting a temporally and spatially 
dynamic ecosystem. Behaviors related to characteristics of 
individual dives, such as dive depth and the percentage of 
dives to specific zones within the water column, were gener-
ally more repeatable than behaviors related to spatial use or 
bout characteristics. While stable isotopes represent behav-
ior at a much coarser resolution than obtained from biolog-
ging devices, δ15N values were related to the percentage of 
dives in the epipelagic zone, suggesting that consistency 
in diving behavior persists to some extent across multiple 
years. Diving bouts represent periods of intensive diving 

and are believed to occur when sea lions encounter or move 
between prey patches (Feldkamp et al. 1989). Bout charac-
teristics may thus be influenced by the specific characteris-
tics of patches (e.g., size, density) as has been suggested for 
other air-breathing marine predators (Boyd 1996), as well 
as the immediate state of an individual (e.g., hunger level, 
energy needs). The persistence of individual prey patches 
in the marine environment occurs on the timescale of sev-
eral weeks (Davoren et al. 2003; Sigler et al. 2017), which 
may have contributed to the reduced repeatability of bout 
and spatial use variables. Trip duration is affected by forag-
ing location, but it also tends to increase during periods of 
reduced prey availability or increased energetic requirements 
(Boyd et al. 1997; Croxall et al. 1999); thus, flexibility in this 
variable is likely adaptive as it allows individuals to adjust to 
current environmental conditions and energy requirements.

Table 2   Model output 
explaining individual variability 
in repeatability estimates for the 
two principal component axes 
where the intercept-only model 
was not one of the top models

Model parameters are shown for all models within 2 ΔAICc of the top model. The intercept-only model 
is also shown for comparison. Adjusted r2 values are presented when the model contained more than one 
variable

Model k logLik AICc ΔAICc w r2

PC 1
 Site fidelity + thermocline 4 − 62.62 134.77 0.00 0.33 0.37
 Site fidelity 3 − 64.59 136.07 1.29 0.17 0.33
 Intercept only 2 − 70.81 146.06 11.28 < 0.01 0.00

PC 2
 Site fidelity + year 6 − 50.03 115.56 0.00 0.26 0.40
 Site fidelity + year + mass 7 − 49.00 116.86 1.31 0.13 0.42
 Site fidelity + thermocline + year 7 − 49.24 117.35 1.79 0.11 0.41
 Intercept only 2 − 60.18 125.76 9.22 < 0.01 0.00

Fig. 4   The relationship between principal component 2 that primarily 
described variation in individual repeatability estimates of night div-
ing behavior and foraging site fidelity (a). The dive profiles (b) and 
satellite tracks (c) for the two sea lions highlighted in a are shown to 
illustrate that deep-diving sea lions with high site fidelity were less 
predictable in behaviors related to dive depth and the percentage of 

dives occurring at night than shallower diving sea lions that were 
more predictable in their diving behavior but exhibited lower site 
fidelity. In b, a subset of six foraging trips is shown for esthetics, and 
darker and lighter shades depict night and day dives, respectively. In 
c, tracks are plotted on bathymetry ranging from 0 to 4000 m depth
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The diving behavior of marine predators often reflects 
characteristics of prey, such that individuals targeting dif-
ferent prey species, age classes, or functional groups exhibit 
distinctive differences in their dive profiles, particularly with 
respect to depth and the position within the water column 
(Tinker et al. 2007; Elliott et al. 2008; Hoskins et al. 2015). 
McHuron et al. (2016b) hypothesized that the presence of 
multiple co-occurring foraging strategies exhibited by adult 
female sea lions, which differed in many of the diving behav-
iors measured here, reflected different target species, such as 
pelagic forage fish, market squid (Doryteuthis opalescens), 
and Pacific hake (Merluccius productus). The repeatability 
of diving behavior may thus reflect individual prey prefer-
ences, although it is unknown what mechanisms might con-
tribute to the occurrence and persistence of these preferences 
for this population. Intra-specific competition is a key factor 
that can contribute to dietary diversification and speciali-
zation in populations (Svanbäck and Bolnick 2007; Tinker 
et al. 2008; Newsome et al. 2015), and could be a contribut-
ing factor here given the current population size (Laake et al. 
2018) and the high-energy demands and restricted range of 
females during lactation that may exacerbate resource limi-
tation (McHuron et al. 2017). Cultural transmission and 
phenotypic differences are less likely explanations (but see 
Schakner et al. 2017), but age (Hoskins et al. 2015), classical 
personality traits (Patrick et al. 2017), and memory-based 
learning during the exploratory juvenile phase (Votier et al. 
2017) are intrinsic factors that could contribute to behavio-
ral consistency of sea lions and deserve further exploration.

Similar to previous studies, behavioral repeatability 
decreased as the measurement timescale increased (Woo 
et al. 2008; Harris et al. 2014; Novak and Tinker 2015; Ker-
naléguen et al. 2016; Camprasse et al. 2017), but the magni-
tude and timing of this decrease differed among behavioral 
categories. Repeatability of spatial use and bout character-
istics decreased significantly when behavior was measured 
across more than three foraging trips, whereas repeatability 
of diving behaviors was relatively consistent across most 
of the tracking duration. These patterns may reflect the dif-
ferent underlying processes influencing these variables as 
mentioned previously, with bout/spatial variables related to 
prey patch characteristics and diving variables reflective of 
species composition that is likely to be relatively constant 
within a season. We hypothesize that sea lions exploit the 
same prey patch (or multiple patches nested within a larger 
area) at short timescales (weeks) but may be forced to move 
among patches at longer timescales, which is supported by 
the positive relationship between PC 1 and site fidelity. The 
timing in the reduction of repeatability estimates aligns well 
with studies on the duration of patch persistence (Davoren 
et al. 2003; Sigler et al. 2017), and as predicted by the mar-
ginal value theorem (MVT), may correspond to the time 
interval at which energy intake in a particular patch is equal 

to the environmental average (Charnov 1976). Empirical 
tests of the MVT are limited in marine species due to chal-
lenges associated with quantifying patch quality and often 
result in conflicting conclusions with respect to optimal for-
aging models (Mori and Boyd 2004; Doniol-Valcroze et al. 
2011; Heaslip et al. 2014; Watanabe et al. 2014; Foo et al. 
2016); however, there is evidence from fur seals that within 
a foraging trip individuals make decisions about leaving prey 
patches in accordance with the MVT (Mori and Boyd 2004).

The majority of studies reporting repeatability estimates 
for diving behavior of marine predators have largely focused 
on seabirds (Cook et al. 2006; Ratcliffe et al. 2013; Harris 
et al. 2014; Patrick et al. 2014; Baylis et al. 2015b; Potier 
et al. 2015; Wakefield et al. 2015; Camprasse et al. 2017) 
and not mammals (McIntyre et al. 2017), although there are 
numerous mammalian studies that have quantified niche var-
iation using stable isotopes (Newsome et al. 2009; Arnould 
et al. 2011; Hückstädt et al. 2012; Kernaléguen et al. 2012; 
Rossman et al. 2015), which may reflect diving behavior. 
Similar to our findings, several studies reported that certain 
diving behaviors (e.g., depth) were more repeatable than 
trip metrics (Cook et al. 2006; Ratcliffe et al. 2013; Har-
ris et al. 2014; Wakefield et al. 2015), but others found the 
opposite relationships (Patrick et al. 2014; Camprasse et al. 
2017). There also appears to be variability among studies 
in the timescale at which repeatability in diving behavior 
persists; for some species or populations it has only been 
documented across relatively short timescales (e.g., days; 
Camprasse et al. 2017), whereas in others it appears to per-
sist across much longer timescales (e.g., years; Woo et al. 
2008; Wakefield et al. 2015; McIntyre et al. 2017). Cam-
prasse et al. (2017) suggested that this lack of consensus 
across studies could be due to temporal consistency in the 
occurrence of prey species, with benthic foragers exhibiting 
greater behavioral consistency because benthic communities 
provide static navigational cues (e.g., bathymetric features) 
that individuals can use to repeatedly visit the same areas. 
Contrary to this hypothesis, our study indicates that pelagic 
foraging species can exhibit strong behavioral consistency, 
suggesting that the occurrence of behavioral consistency 
may be modulated at the population or even colony level, 
as many species experience variable oceanographic condi-
tions throughout their range and exhibit colony-specific dif-
ferences in foraging sites and diet (Grémillet et al. 2004; 
Suryan et al. 2006; Garthe et al. 2007; Baylis et al. 2008; 
Kuhn et al. 2014).

While most diving behaviors were moderately repeatable 
at the population level, there was variation among individu-
als in the strength of behavioral repeatability. This variation 
was either unrelated or negatively associated with forag-
ing site fidelity, suggesting that there are multiple ways for 
female sea lions to exhibit behavioral specialization. Our 
findings are similar to those of Wakefield et al. (2015) for 
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northern gannets (Morus bassanus) but inconsistent with the 
assumption that site fidelity dictates consistency in diving 
behavior (Staniland et al. 2004; Kuhn et al. 2014; Arthur 
et al. 2016). The negative relationship between repeatability 
of night diving behaviors and site fidelity was associated 
with dive depth and the percentage of mesopelagic dives, 
with deeper diving sea lions exhibiting higher site fidelity 
yet lower predictability in their diving behavior across for-
aging trips than shallow divers. Deep-diving is a spatially 
explicit foraging strategy at San Nicolas Island, with forag-
ing concentrated in a relatively small area along the conti-
nental shelf break (McHuron et al. 2016a). This relationship 
may arise because sea lions using this strategy forage on a 
variety of prey species that vary in their diel behavior, or 
because the proximity of their core foraging area to other 
habitats may provide female sea lions with a range of forag-
ing opportunities, thereby reducing consistency in diving 
behavior. At the opposite end of the spectrum, the strong 
predictability exhibited by some shallow-diving sea lions 
with low site fidelity may still be attributable to foraging 
location; most of these sea lions foraged on the continental 
shelf, which may constrain the range of available behaviors. 
It also is possible that sea lions targeted similar or the same 
prey species despite foraging in different areas. Year was an 
important explanatory factor for PC 2, suggesting that prey 
availability may play a role in driving behavioral consistency 
in this species.

Studies investigating consistency in foraging behavior are 
key in understanding the strategies individuals use to cope 
with environmental variation and the potential for species 
to adapt to a rapidly changing environment. The CCS is a 
productive eastern boundary system characterized by sea-
sonal, annual, and multi-year variability in oceanographic 
conditions, including seasonal upwelling, tropical El Niño 
Southern Oscillation forcing, and Pacific Decadal Oscil-
lation (Checkley and Barth 2009). California sea lions are 
typically considered to be a flexible species with respect to 
foraging, as they consume a diversity of prey species (Orr 
et al. 2011) and alter their behavior during El Niño events 
or other anomalous periods of increased SST (Weise et al. 
2006; Melin et al. 2008). For example, Melin et al. (2008) 
found that lactating females from San Miguel Island spent 
more time in offshore habitats and dived deeper during an 
El Niño event compared with non-El Niño conditions. Our 
study provides further insight into population- and individ-
ual-level behavioral responses to environmental change, as 
the whisker isotope data covered a temporal period asso-
ciated with anomalously warm SST and multiple years of 
poor reproductive success (McClatchie et al. 2016a, b). We 
found that isotope values of both C and N were significant 
repeatedly across the 2-year period but that some sea lions 
were more predictable than others in their behavior. At the 
population level, California sea lions may be buffered to 

some extent from environmental change due to the wide 
range of behaviors present within the population; however, 
the behavioral flexibility of individual sea lions appears to 
operate within the constraints of behavioral consistency, 
which may limit the ability of individuals to successfully 
adapt to environmental change depending on the degree of 
mismatch between behavior and prey availability. While we 
cannot exclude the hypothesis that consistency is an emer-
gent property of successful foraging and not indicative of 
the true flexibility of sea lions, this seems unlikely given 
that several of the sea lions in 2014 were not observed with 
a pup or had an underweight pup, suggesting that they were 
not successful enough with their current (or previous) forag-
ing behavior to support the costs of reproduction (McHuron 
et al. 2018). Further investigation of these patterns is war-
ranted given the relatively small sample size, representation 
of a single rookery, and lack of data from an “average” year 
for comparison.

Behavioral consistency has been a focus of both eco-
logical and behavioral studies due to the ramifications that 
individual variation in resource use has for ecological and 
evolutionary processes (Bolnick et al. 2003; Wolf and Weiss-
ing 2012). Our study adds to a growing body of literature 
that indicates many populations of marine predators exhibit 
some degree of behavioral consistency with respect to forag-
ing (Ceia and Ramos 2015; Carneiro et al. 2017). Behavioral 
consistency in female California sea lions may in part arise 
because individuals prey on different functional groups, 
species, or age classes; however, further research is neces-
sary to provide support for this hypothesis and elucidate the 
mechanisms that give rise to this behavioral diversity. The 
decreasing strength of repeatability estimates with time indi-
cates that sea lions alter their behavior in response to envi-
ronmental changes, which is likely adaptive for a species that 
inhabits a dynamic environment where prey availability var-
ies at multiple temporal and spatial scales. The tendency for 
some sea lions to be more predictable than others appeared 
partially driven by prey availability and prey behavior; how-
ever, the remaining unexplained variance raises questions 
about other factors that may contribute to this pattern (e.g., 
physiology, personality traits) and whether consistency in 
foraging behavior is part of a larger behavioral syndrome in 
this species. The presence of behavioral consistency indi-
cates that the flexibility of sea lions to alter their behavior 
in response to environmental change may be tempered by 
consistency; however, because some sea lions were more 
predictable than others this effect is unlikely to be uniform 
across the population, which leads to the question of whether 
there are fitness advantages associated with different behav-
ioral strategies. Studies on a variety of marine and terrestrial 
predators have produced conflicting results, and even when 
present, the strength and direction of fitness consequences 
appear to be modulated by environmental conditions (Votier 
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et al. 2004, 2017; Katzner et al. 2005; Woo et al. 2008; Whit-
field et al. 2009; van de Pol et al. 2010; Patrick and Weimer-
skirch 2014a, b, 2017; Abrahms et al. 2018). Variation in 
diving behavior has energetic implications for sea lions 
across short timescales (McHuron et al. 2018), but future 
studies that couple measurements of sea lion foraging behav-
ior with reproductive success and other behavioral traits are 
necessary for understanding the mechanisms that give rise to 
behavioral consistency and in predicting how environmental 
changes will shape the population dynamics and ecological 
impacts of this abundant and generalist species.
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